Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model
Alessandro Turco; François Alouges; Antonio DeSimone
ESAIM: Mathematical Modelling and Numerical Analysis (2009)
- Volume: 43, Issue: 6, page 1027-1044
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- G. Alberti and A. De Simone, Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. A461 (2005) 79–97.
- G. Alberti and A. DeSimone, Quasistatic evolution of sessile drops and contact angle hysteresis. In preparation (2009).
- G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with line-tension effect. Arch. Rat. Mech. Anal.144 (1998) 1–46.
- S. Baldo and G. Bellettini, Γ-convergence and numerical analysis: an application to the minimal partition problem. Ricerche di Matematica1 (1991) 33–64.
- W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comp.25 (2004) 1674.
- A. Braides, Γ-convergence for beginners. Oxford University Press (2002).
- M. Callies and D. Quéré, On water repellency. Soft Matter1 (2005) 55–61.
- G. Dal Maso, An introduction to Γ-convergence. Birkhaüser (1993).
- P.-G. De Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and Wetting Phenomena. Springer (2004).
- A. DeSimone, N. Grunewald and F. Otto, A new model for contact angle hysteresis. Networks and Heterogeneous Media2 (2007) 211–225
- R. Finn, Equilibrium Capillary Surfaces. Springer (1986).
- A. Lafuma and D. Quéré, Superhydrophobic states. Nature Materials2 (2003) 457–460.
- L. Modica, Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire5 (1987) 497.
- L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. It. B14 (1977) 285–299.
- N.A. Patankar, On the modeling of hydrophobic contact angles on rough surfaces. Langmuir19 (2003) 1249–1253.
- S.J. Polak, An increased accuracy scheme for diffusion equations in cylindrical coordinates. J. Inst. Math. Appl.14 (1974) 197–201.
- P. Seppecher, Moving contact lines in the Cahn-Hilliard theory. Int. J. Engng. Sci.34 (1996) 977–992.
- J.C. Strikwerda, Finite Difference Schemes and PDE. SIAM (2004).