The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy”

On the Ginzburg-Landau and related equations

Yu N. Ovchinnikov, Israel Michael Sigal (1997-1998)

Séminaire Équations aux dérivées partielles

Similarity:

We describe qualitative behaviour of solutions of the Gross-Pitaevskii equation in 2D in terms of motion of vortices and radiation. To this end we introduce the notion of the intervortex energy. We develop a rather general adiabatic theory of motion of well separated vortices and present the method of effective action which gives a fairly straightforward justification of this theory. Finally we mention briefly two special situations where we are able to obtain rather detailed picture...

On a model of rotating superfluids

Sylvia Serfaty (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider an energy-functional describing rotating superfluids at a rotating velocity ω , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω , and the derivation of a limiting free-boundary problem.