# An existence result for a nonconvex variational problem via regularity

Irene Fonseca; Nicola Fusco^{[1]}; Paolo Marcellini

- [1] Dipartimento di Matematica e Applicazioni Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy;

ESAIM: Control, Optimisation and Calculus of Variations (2002)

- Volume: 7, page 69-95
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topFonseca, Irene, Fusco, Nicola, and Marcellini, Paolo. "An existence result for a nonconvex variational problem via regularity." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 69-95. <http://eudml.org/doc/244986>.

@article{Fonseca2002,

abstract = {Local Lipschitz continuity of minimizers of certain integrals of the Calculus of Variations is obtained when the integrands are convex with respect to the gradient variable, but are not necessarily uniformly convex. In turn, these regularity results entail existence of minimizers of variational problems with non-homogeneous integrands nonconvex with respect to the gradient variable. The $x$-dependence, explicitly appearing in the integrands, adds significant technical difficulties in the proof.},

affiliation = {Dipartimento di Matematica e Applicazioni Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy;},

author = {Fonseca, Irene, Fusco, Nicola, Marcellini, Paolo},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {nonconvex variational problems; uniform convexity; regularity; implicit differential equations; variational problems; nonconvex integrands; existence of minimizers},

language = {eng},

pages = {69-95},

publisher = {EDP-Sciences},

title = {An existence result for a nonconvex variational problem via regularity},

url = {http://eudml.org/doc/244986},

volume = {7},

year = {2002},

}

TY - JOUR

AU - Fonseca, Irene

AU - Fusco, Nicola

AU - Marcellini, Paolo

TI - An existence result for a nonconvex variational problem via regularity

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2002

PB - EDP-Sciences

VL - 7

SP - 69

EP - 95

AB - Local Lipschitz continuity of minimizers of certain integrals of the Calculus of Variations is obtained when the integrands are convex with respect to the gradient variable, but are not necessarily uniformly convex. In turn, these regularity results entail existence of minimizers of variational problems with non-homogeneous integrands nonconvex with respect to the gradient variable. The $x$-dependence, explicitly appearing in the integrands, adds significant technical difficulties in the proof.

LA - eng

KW - nonconvex variational problems; uniform convexity; regularity; implicit differential equations; variational problems; nonconvex integrands; existence of minimizers

UR - http://eudml.org/doc/244986

ER -

## References

top- [1] E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: The case $1lt;plt;2$. J. Math. Anal. Appl. 140 (1989) 115-135. Zbl0686.49004MR997847
- [2] L. Ambrosio, N. Fusco and D. Pallara, Special functions of bounded variation and free discontinuity problems. Oxford University Press (2000). Zbl0957.49001MR1857292
- [3] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 15-52. Zbl0629.49020MR906132
- [4] J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructure and the two wells problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1991) 389-450. Zbl0758.73009
- [5] P. Celada and S. Perrotta, Minimizing non convex, multiple integrals: A density result. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 721-741. Zbl0963.49001MR1776673
- [6] A. Cellina, On minima of a functional of the gradient: Necessary conditions. Nonlinear Anal. 20 (1993) 337-341. Zbl0784.49021MR1206422
- [7] A. Cellina, On minima of a functional of the gradient: Sufficient conditions. Nonlinear Anal. 20 (1993) 343-347. Zbl0784.49022MR1206423
- [8] B. Dacorogna and P. Marcellini, Existence of minimizers for non quasiconvex integrals. Arch. Rational Mech. Anal. 131 (1995) 359-399. Zbl0837.49002MR1354700
- [9] B. Dacorogna and P. Marcellini, Théorème d’existence dans le cas scalaire et vectoriel pour les équations de Hamilton–Jacobi. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 237-240. Zbl0846.35028
- [10] B. Dacorogna and P. Marcellini, Sur le problème de Cauchy–Dirichlet pour les systèmes d’équations non linéaires du premier ordre. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 599-602. Zbl0860.35020
- [11] B. Dacorogna and P. Marcellini, General existence theorems for Hamilton–Jacobi equations in the scalar and vectorial case. Acta Math. 178 (1997) 1-37. Zbl0901.49027
- [12] B. Dacorogna and P. Marcellini, Implicit partial differential equations. Birkhäuser, Boston (1999). Zbl0938.35002MR1702252
- [13] B. Dacorogna and P. Marcellini, Attainment of minima and implicit partial differential equations. Ricerche Mat. 48 (1999) 311-346. Zbl0939.49013MR1765691
- [14] F.S. De Blasi and G. Pianigiani, On the Dirichlet problem for first order partial differential equations. A Baire category approach. NoDEA Nonlinear Differential Equations Appl. 6 (1999) 13-34. Zbl0922.35039MR1674778
- [15] G. Dolzmann, B. Kirchheim, S. Müller and V. Šverák, The two-well problem in three dimensions. Calc. Var. Partial Differential Equations 10 (2000) 21-40. Zbl0956.74039MR1803972
- [16] L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal. 95 (1986) 227-252. Zbl0627.49006MR853966
- [17] L.C. Evans and R.F. Gariepy, Blowup, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J. 36 (1987) 361-371. Zbl0626.49007MR891780
- [18] I. Fonseca and G. Francfort, $3D-2D$ asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math. 505 (1998) 173-202. Zbl0917.73052MR1662252
- [19] I. Fonseca and N. Fusco, Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997) 463-499. Zbl0899.49018MR1612389
- [20] I. Fonseca and G. Leoni, Bulk and contact energies: Nucleation and relaxation. SIAM J. Math. Anal. 30 (1998) 190-219. Zbl0924.49010MR1656999
- [21] G. Friesecke, A necessary and sufficient condition for non attainment and formation of microstructure almost everywhere in scalar variational problems. Proc. Royal Soc. Edinburgh Sect. A 124 (1994) 437-471. Zbl0809.49017MR1286914
- [22] P. Marcellini, A relation between existence of minima for nonconvex integrals and uniqueness for not strictly convex integrals of the calculus of variations, Math. Theories of Optimization, edited by J.P. Cecconi and T. Zolezzi. Springer-Verlag, Lecture Notes in Math. 979 (1983) 216-231. Zbl0505.49009MR713812
- [23] E. Mascolo and R. Schianchi, Existence theorems for nonconvex problems. J. Math. Pures Appl. 62 (1983) 349-359. Zbl0522.49001MR718948
- [24] E. Mascolo and R. Schianchi, Nonconvex problems in the calculus of variations. Nonlinear Anal. 9 (1985) 371-379. MR783584
- [25] E. Mascolo and R. Schianchi, Existence theorems in the calculus of variations. J. Differential Equations 67 (1987) 185-198. MR879692
- [26] S. Müller and V. Šverák, Attainment results for the two-well problem by convex integration, edited by J. Jost. International Press (1996) 239-251. Zbl0930.35038MR1449410
- [27] J.P. Raymond, Existence of minimizers for vector problems without quasiconvexity conditions. Nonlinear Anal. 18 (1992) 815-828. Zbl0762.49001MR1162475
- [28] M.A. Sychev, Characterization of homogeneous scalar variational problems solvable for all boundary data. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 611-631. Zbl0971.49004MR1769245
- [29] S. Zagatti, Minimization of functionals of the gradient by Baire’s theorem. SIAM J. Control Optim. 38 (2000) 384-399. Zbl0948.49004
- [30] W.P. Ziemer, Weakly differentiable functions. Springer-Verlag, New York, Grad. Texts in Math. (1989). Zbl0692.46022MR1014685

## Citations in EuDML Documents

top- Pietro Celada, Giovanni Cupini, Marcello Guidorzi, Existence and regularity of minimizers of nonconvex integrals with growth
- Michela Eleuteri, Regularity results for a class of obstacle problems
- Bruno De Maria, A regularity result for a convex functional and bounds for the singular set
- Michela Eleuteri, Hölder continuity results for a class of functionals with non-standard growth
- Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.