Regularity results for anisotropic image segmentation models

Irene Fonseca; Nicola Fusco[1]

  • [1] Dipartimento di Matematica e Applicazioni Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy;

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 3, page 463-499
  • ISSN: 0391-173X

How to cite

top

Fonseca, Irene, and Fusco, Nicola. "Regularity results for anisotropic image segmentation models." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.3 (1997): 463-499. <http://eudml.org/doc/84266>.

@article{Fonseca1997,
affiliation = {Dipartimento di Matematica e Applicazioni Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy;},
author = {Fonseca, Irene, Fusco, Nicola},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Mumford-Shah functional; image segmentation; special functions of bounded variation; SBV},
language = {eng},
number = {3},
pages = {463-499},
publisher = {Scuola normale superiore},
title = {Regularity results for anisotropic image segmentation models},
url = {http://eudml.org/doc/84266},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Fonseca, Irene
AU - Fusco, Nicola
TI - Regularity results for anisotropic image segmentation models
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 3
SP - 463
EP - 499
LA - eng
KW - Mumford-Shah functional; image segmentation; special functions of bounded variation; SBV
UR - http://eudml.org/doc/84266
ER -

References

top
  1. [A1] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital.B3 (1989), 857-881. Zbl0767.49001MR1032614
  2. [A2] L. Ambrosio, A new proof of the SB V compactness theorem, Calc. Var. Partial Differential Equations3 (1995), 127-137. Zbl0837.49011MR1384840
  3. [AFP] L. Ambrosio - N. Fusco - D. Pallara, Partial regularity offree discontinuity sets II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 39-62. Zbl0896.49024MR1475772
  4. [AP] L. Ambrosio - D. Pallara, Partial regularity of free discontinuity sets I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997), 1-38. Zbl0896.49023MR1475771
  5. [BZ] A. Blake - A. Zisserman, Visual Reconstruction, M.I.T. Press, 1987. MR919733
  6. [CL] M. Carrieri - A. Leaci, Sk-valued maps minimizing the LP norm of the gradient withfree discontinuities, Ann. Scuola. Norm. Sup. Pisa Cl. Sci.18 (1991), 321-352. Zbl0753.49018MR1145314
  7. [DMMS] G. Dal Maso - J.-M. Morel - S. Solimini, A variational method in image segmentation : existence and approximation results, Acta Math. 168 (1992), 89-151. Zbl0772.49006MR1149865
  8. [DS] G. David - S. Semmes, On the singular set of minimizers of the Mumford-Shah functional, J. Math. Pures Appl., to appear. Zbl0853.49010
  9. [DG] E. De Giorgi, Free Discontinuity Problems in the Calculus of Variations, a collection of papers dedicated to J. L. Lions on the occasion of his 60th birthday, North Holland (R. Dautray ed.), 1991. Zbl0758.49002MR1110593
  10. [DGA] E. De Giorgi - L. Ambrosio, Un nuovo tipo difunzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988), 199-210. Zbl0715.49014MR1152641
  11. [DGCL] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
  12. [DB] E. Di Benedetto, C1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal.7 (1983), 827-850. Zbl0539.35027
  13. [F] H. Federer, Geometric Measure Theory, Springer, New York, 1969. Zbl0176.00801MR257325
  14. [FF] I. Fonseca - G. Francofort, Relaxation in B V versus quasiconvexification in W1,p; a model for the interaction between fracture and damage, Calc. Var. Partial Differential Equations3 (1995), 407-446. Zbl0847.73077MR1385294
  15. [GM] M. Giaquinta - G. Modica, Remarks on the regularity of certain degenerate functionals, Manuscripta Math.57 (1986), 55-99. Zbl0607.49003MR866406
  16. [M] J. Manfredi, Regularity for minima of functionals with p-growth, J. Differential Equations76 (1988), 203-212. Zbl0674.35008MR969420
  17. [MS] J.-M. Morel - S. Solimini, Variational Methods in Image Segmentation, Birkhäuser, Boston, 1995. MR1321598

Citations in EuDML Documents

top
  1. Irene Fonseca, Nicola Fusco, Paolo Marcellini, An existence result for a nonconvex variational problem via regularity
  2. Irene Fonseca, Nicola Fusco, Paolo Marcellini, An existence result for a nonconvex variational problem via regularity
  3. Michela Eleuteri, Regularity results for a class of obstacle problems
  4. Pietro Celada, Giovanni Cupini, Marcello Guidorzi, Existence and regularity of minimizers of nonconvex integrals with growth
  5. Menita Carozza, Irene Fonseca, Antonia Passarelli di Napoli, Regularity results for an optimal design problem with a volume constraint
  6. Mikil Foss, Giuseppe Mingione, Partial continuity for elliptic problems
  7. Emilio Acerbi, Irene Fonseca, Nicola Fusco, Regularity of minimizers for a class of membrane energies
  8. Bruno De Maria, A regularity result for a convex functional and bounds for the singular set
  9. Michela Eleuteri, Hölder continuity results for a class of functionals with non-standard growth
  10. Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.