Regularity results for anisotropic image segmentation models
Irene Fonseca; Nicola Fusco[1]
- [1] Dipartimento di Matematica e Applicazioni Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy;
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 24, Issue: 3, page 463-499
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFonseca, Irene, and Fusco, Nicola. "Regularity results for anisotropic image segmentation models." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.3 (1997): 463-499. <http://eudml.org/doc/84266>.
@article{Fonseca1997,
affiliation = {Dipartimento di Matematica e Applicazioni Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy;},
author = {Fonseca, Irene, Fusco, Nicola},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Mumford-Shah functional; image segmentation; special functions of bounded variation; SBV},
language = {eng},
number = {3},
pages = {463-499},
publisher = {Scuola normale superiore},
title = {Regularity results for anisotropic image segmentation models},
url = {http://eudml.org/doc/84266},
volume = {24},
year = {1997},
}
TY - JOUR
AU - Fonseca, Irene
AU - Fusco, Nicola
TI - Regularity results for anisotropic image segmentation models
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 3
SP - 463
EP - 499
LA - eng
KW - Mumford-Shah functional; image segmentation; special functions of bounded variation; SBV
UR - http://eudml.org/doc/84266
ER -
References
top- [A1] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital.B3 (1989), 857-881. Zbl0767.49001MR1032614
- [A2] L. Ambrosio, A new proof of the SB V compactness theorem, Calc. Var. Partial Differential Equations3 (1995), 127-137. Zbl0837.49011MR1384840
- [AFP] L. Ambrosio - N. Fusco - D. Pallara, Partial regularity offree discontinuity sets II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 39-62. Zbl0896.49024MR1475772
- [AP] L. Ambrosio - D. Pallara, Partial regularity of free discontinuity sets I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997), 1-38. Zbl0896.49023MR1475771
- [BZ] A. Blake - A. Zisserman, Visual Reconstruction, M.I.T. Press, 1987. MR919733
- [CL] M. Carrieri - A. Leaci, Sk-valued maps minimizing the LP norm of the gradient withfree discontinuities, Ann. Scuola. Norm. Sup. Pisa Cl. Sci.18 (1991), 321-352. Zbl0753.49018MR1145314
- [DMMS] G. Dal Maso - J.-M. Morel - S. Solimini, A variational method in image segmentation : existence and approximation results, Acta Math. 168 (1992), 89-151. Zbl0772.49006MR1149865
- [DS] G. David - S. Semmes, On the singular set of minimizers of the Mumford-Shah functional, J. Math. Pures Appl., to appear. Zbl0853.49010
- [DG] E. De Giorgi, Free Discontinuity Problems in the Calculus of Variations, a collection of papers dedicated to J. L. Lions on the occasion of his 60th birthday, North Holland (R. Dautray ed.), 1991. Zbl0758.49002MR1110593
- [DGA] E. De Giorgi - L. Ambrosio, Un nuovo tipo difunzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988), 199-210. Zbl0715.49014MR1152641
- [DGCL] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
- [DB] E. Di Benedetto, C1,α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal.7 (1983), 827-850. Zbl0539.35027
- [F] H. Federer, Geometric Measure Theory, Springer, New York, 1969. Zbl0176.00801MR257325
- [FF] I. Fonseca - G. Francofort, Relaxation in B V versus quasiconvexification in W1,p; a model for the interaction between fracture and damage, Calc. Var. Partial Differential Equations3 (1995), 407-446. Zbl0847.73077MR1385294
- [GM] M. Giaquinta - G. Modica, Remarks on the regularity of certain degenerate functionals, Manuscripta Math.57 (1986), 55-99. Zbl0607.49003MR866406
- [M] J. Manfredi, Regularity for minima of functionals with p-growth, J. Differential Equations76 (1988), 203-212. Zbl0674.35008MR969420
- [MS] J.-M. Morel - S. Solimini, Variational Methods in Image Segmentation, Birkhäuser, Boston, 1995. MR1321598
Citations in EuDML Documents
top- Irene Fonseca, Nicola Fusco, Paolo Marcellini, An existence result for a nonconvex variational problem via regularity
- Irene Fonseca, Nicola Fusco, Paolo Marcellini, An existence result for a nonconvex variational problem via regularity
- Michela Eleuteri, Regularity results for a class of obstacle problems
- Pietro Celada, Giovanni Cupini, Marcello Guidorzi, Existence and regularity of minimizers of nonconvex integrals with growth
- Menita Carozza, Irene Fonseca, Antonia Passarelli di Napoli, Regularity results for an optimal design problem with a volume constraint
- Mikil Foss, Giuseppe Mingione, Partial continuity for elliptic problems
- Emilio Acerbi, Irene Fonseca, Nicola Fusco, Regularity of minimizers for a class of membrane energies
- Bruno De Maria, A regularity result for a convex functional and bounds for the singular set
- Michela Eleuteri, Hölder continuity results for a class of functionals with non-standard growth
- Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.