A backward particle interpretation of Feynman-Kac formulae
Pierre Del Moral; Arnaud Doucet; Sumeetpal S. Singh
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 44, Issue: 5, page 947-975
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topDel Moral, Pierre, Doucet, Arnaud, and Singh, Sumeetpal S.. "A backward particle interpretation of Feynman-Kac formulae." ESAIM: Mathematical Modelling and Numerical Analysis 44.5 (2010): 947-975. <http://eudml.org/doc/250778>.
@article{DelMoral2010,
abstract = {
We design a particle interpretation of Feynman-Kac measures on path spaces
based on a backward Markovian representation combined with a traditional
mean field particle interpretation of the flow of their final time
marginals. In contrast to traditional genealogical tree based models, these
new particle algorithms can be used to compute normalized additive
functionals “on-the-fly” as well as their
limiting occupation measures with a given precision degree that does not
depend on the final time horizon.
We provide uniform convergence results w.r.t. the time horizon parameter as
well as functional central limit theorems and exponential concentration
estimates, yielding what seems to be the first results of this type for this
class of models. We also illustrate these results in the context of
filtering of hidden Markov models, as well as in computational physics and
imaginary time Schroedinger type partial differential equations, with a
special interest in the numerical approximation of the invariant measure
associated to h-processes.
},
author = {Del Moral, Pierre, Doucet, Arnaud, Singh, Sumeetpal S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Feynman-Kac models; mean field particle algorithms; functional
central limit theorems; exponential concentration; non asymptotic estimates; functional central limit theorems; convergence filtering; hidden Markov models; Schrödinger equations; numerical example},
language = {eng},
month = {8},
number = {5},
pages = {947-975},
publisher = {EDP Sciences},
title = {A backward particle interpretation of Feynman-Kac formulae},
url = {http://eudml.org/doc/250778},
volume = {44},
year = {2010},
}
TY - JOUR
AU - Del Moral, Pierre
AU - Doucet, Arnaud
AU - Singh, Sumeetpal S.
TI - A backward particle interpretation of Feynman-Kac formulae
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/8//
PB - EDP Sciences
VL - 44
IS - 5
SP - 947
EP - 975
AB -
We design a particle interpretation of Feynman-Kac measures on path spaces
based on a backward Markovian representation combined with a traditional
mean field particle interpretation of the flow of their final time
marginals. In contrast to traditional genealogical tree based models, these
new particle algorithms can be used to compute normalized additive
functionals “on-the-fly” as well as their
limiting occupation measures with a given precision degree that does not
depend on the final time horizon.
We provide uniform convergence results w.r.t. the time horizon parameter as
well as functional central limit theorems and exponential concentration
estimates, yielding what seems to be the first results of this type for this
class of models. We also illustrate these results in the context of
filtering of hidden Markov models, as well as in computational physics and
imaginary time Schroedinger type partial differential equations, with a
special interest in the numerical approximation of the invariant measure
associated to h-processes.
LA - eng
KW - Feynman-Kac models; mean field particle algorithms; functional
central limit theorems; exponential concentration; non asymptotic estimates; functional central limit theorems; convergence filtering; hidden Markov models; Schrödinger equations; numerical example
UR - http://eudml.org/doc/250778
ER -
References
top- D. Bakry, L'hypercontractivitée et son utilisation en théorie des semigroupes, in Lecture Notes in Math.1581, École d'été de St. Flour XXII, P. Bernard Ed. (1992).
- P. Billingsley, Probability and Measure. Third edition, Wiley series in probability and mathematical statistics (1995).
- E. Cancès, B. Jourdain and T. Lelièvre, Quantum Monte Carlo simulations of fermions. A mathematical analysis of the fixed-node approximation. ESAIM: M2AN16 (2006) 1403–1449.
- F. Cerou, P. Del Moral and A. Guyader, A non asymptotic variance theorem for unnormalized Feynman-Kac particle models. Ann. Inst. Henri Poincaré (to appear).
- P.-A. Coquelin, R. Deguest and R. Munos, Numerical methods for sensitivity analysis of Feynman-Kac models. Available at , HAL-INRIA Research Report 6710 (2008). URIhttp://hal.inria.fr/inria-00336203/en/
- D. Crisan, P. Del Moral and T. Lyons, Interacting Particle Systems. Approaximations of the Kushner-Stratonovitch Equation. Adv. Appl. Probab.31 (1999) 819–838.
- P. Del Moral, Feynman-Kac formulae. Genealogical and interacting particle systems with applications. Probability and its Applications, Springer Verlag, New York (2004).
- P. Del Moral and A. Doucet, Particle motions in absorbing medium with hard and soft obstacles. Stoch. Anal. Appl.22 (2004) 1175–1207.
- P. Del Moral and L. Miclo, Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering, in Séminaire de Probabilités XXXIV, Lecture Notes in Math.1729, Springer, Berlin (2000) 1–145.
- P. Del Moral and L. Miclo, Particle approximations of Lyapunov exponents connected to Schroedinger operators and Feynman-Kac semigroups. ESAIM: PS7 (2003) 171–208.
- P. Del Moral and E. Rio, Concentration inequalities for mean field particle models. Available at , HAL-INRIA Research Report 6901 (2009). URIhttp://hal.inria.fr/inria-00375134/fr/
- P. Del Moral, J. Jacod and P. Protter, The Monte Carlo Method for filtering with discrete-time observations. Probab. Theory Relat. Fields120 (2001) 346–368.
- P. Del Moral, A. Doucet and S.S. Singh, Forward smoothing using sequential Monte Carlo. Cambridge University Engineering Department, Technical Report CUED/F-INFENG/TR 638 (2009).
- G.B. Di Masi, M. Pratelli and W.G. Runggaldier, An approximation for the nonlinear filtering problem with error bounds. Stochastics14 (1985) 247–271.
- R. Douc, A. Garivier, E. Moulines and J. Olsson, On the forward filtering backward smoothing particle approximations of the smoothing distribution in general state spaces models. Technical report, available at arXiv:0904.0316.
- A. Doucet, N. De Freitas and N. Gordon Eds., Sequential Monte Carlo Methods in Pratice. Statistics for engineering and Information Science, Springer, New York (2001).
- M. El Makrini, B. Jourdain and T. Lelièvre, Diffusion Monte Carlo method: Numerical analysis in a simple case. ESAIM: M2AN41 (2007) 189–213.
- M. Émery, Stochastic calculus in manifolds. Universitext, Springer-Verlag, Berlin (1989).
- S.J. Godsill, A. Doucet and M. West, Monte Carlo smoothing for nonlinear time series. J. Am. Stat. Assoc.99 (2004) 156–168.
- N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes24. Second edition, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam (1989).
- M. Kac, On distributions of certain Wiener functionals. Trans. Am. Math. Soc.65 (1949) 1–13.
- G. Kallianpur and C. Striebel, Stochastic differential equations occurring in the estimation of continuous parameter stochastic processes. Tech. Rep. 103, Department of Statistics, University of Minnesota, Minneapolis (1967).
- N. Kantas, A. Doucet, S.S. Singh and J.M. Maciejowski, An overview of sequential Monte Carlo methods for parameter estimation in general state-space models, in Proceedings IFAC System Identification(SySid) Meeting, available at (2009). URIhttp://publications.eng.cam.ac.uk/16156/
- H. Korezlioglu and W.J. Runggaldier, Filtering for nonlinear systems driven by nonwhite noises: an approximating scheme. Stoch. Stoch. Rep.44 (1983) 65–102.
- J. Picard, Approximation of the nonlinear filtering problems and order of convergence, in Filtering and control of random processes, Lecture Notes in Control and Inf. Sci.61, Springer (1984) 219–236.
- G. Poyiadjis, A. Doucet and S.S. Singh, Sequential Monte Carlo computation of the score and observed information matrix in state-space models with application to parameter estimation. Technical Report CUED/F-INFENG/TR 628, Cambridge University Engineering Department (2009).
- D. Revuz, Markov chains. North-Holland (1975).
- M. Rousset, On the control of an interacting particle approximation of Schroedinger ground states. SIAM J. Math. Anal.38 (2006) 824–844.
- A.N. Shiryaev, Probability, Graduate Texts in Mathematics95. Second edition, Springer (1986).
- D.W. Stroock, Probability Theory: an Analytic View. Cambridge University Press, Cambridge (1994).
- D.W. Stroock, An Introduction to Markov Processes, Graduate Texts in Mathematics230. Springer (2005).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.