Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process
Benjamin Jourdain; Tony Lelièvre; Raphaël Roux
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 44, Issue: 5, page 831-865
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topJourdain, Benjamin, Lelièvre, Tony, and Roux, Raphaël. "Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process." ESAIM: Mathematical Modelling and Numerical Analysis 44.5 (2010): 831-865. <http://eudml.org/doc/250783>.
@article{Jourdain2010,
abstract = {
We study a free energy computation procedure, introduced in
[Darve and Pohorille,
J. Chem. Phys.115 (2001) 9169–9183; Hénin and Chipot,
J. Chem. Phys.121 (2004) 2904–2914], which relies on the long-time
behavior of a nonlinear stochastic
differential equation. This nonlinearity comes from a conditional
expectation computed with respect to one coordinate of the solution. The long-time convergence of the solutions to
this equation has been proved
in [Lelièvre et al.,
Nonlinearity21 (2008) 1155–1181], under some existence and regularity assumptions.
In this paper, we prove existence and uniqueness under suitable conditions for the nonlinear equation, and
we study a particle approximation technique based on a Nadaraya-Watson estimator of
the conditional expectation. The particle system converges to the solution
of the nonlinear equation if the number of particles goes to infinity
and then the kernel used in the Nadaraya-Watson approximation tends to a
Dirac mass.
We derive a rate for this convergence, and illustrate it by numerical
examples on a toy model.
},
author = {Jourdain, Benjamin, Lelièvre, Tony, Roux, Raphaël},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Conditional McKean nonlinearity; interacting particle systems; Adaptive
Biasing Force method; conditional McKean nonlinearity, interacting particle systems; adaptive biasing force method; nonlinear stochastic differential equation; Nadaraya-Watson estimator; convergence; numerical examples},
language = {eng},
month = {8},
number = {5},
pages = {831-865},
publisher = {EDP Sciences},
title = {Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process},
url = {http://eudml.org/doc/250783},
volume = {44},
year = {2010},
}
TY - JOUR
AU - Jourdain, Benjamin
AU - Lelièvre, Tony
AU - Roux, Raphaël
TI - Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/8//
PB - EDP Sciences
VL - 44
IS - 5
SP - 831
EP - 865
AB -
We study a free energy computation procedure, introduced in
[Darve and Pohorille,
J. Chem. Phys.115 (2001) 9169–9183; Hénin and Chipot,
J. Chem. Phys.121 (2004) 2904–2914], which relies on the long-time
behavior of a nonlinear stochastic
differential equation. This nonlinearity comes from a conditional
expectation computed with respect to one coordinate of the solution. The long-time convergence of the solutions to
this equation has been proved
in [Lelièvre et al.,
Nonlinearity21 (2008) 1155–1181], under some existence and regularity assumptions.
In this paper, we prove existence and uniqueness under suitable conditions for the nonlinear equation, and
we study a particle approximation technique based on a Nadaraya-Watson estimator of
the conditional expectation. The particle system converges to the solution
of the nonlinear equation if the number of particles goes to infinity
and then the kernel used in the Nadaraya-Watson approximation tends to a
Dirac mass.
We derive a rate for this convergence, and illustrate it by numerical
examples on a toy model.
LA - eng
KW - Conditional McKean nonlinearity; interacting particle systems; Adaptive
Biasing Force method; conditional McKean nonlinearity, interacting particle systems; adaptive biasing force method; nonlinear stochastic differential equation; Nadaraya-Watson estimator; convergence; numerical examples
UR - http://eudml.org/doc/250783
ER -
References
top- R. Adams, Sobolev spaces. Academic Press (1978).
- M. Bossy, J.F. Jabir and D. Talay, On conditional McKean Lagrangian stochastic models. Prob. Theor. Relat. Fields (to appear).
- H. Brézis, Analyse fonctionnelle. Théorie et applications. Collection Mathématiques appliquées pour la maîtrise, Masson, Paris (1983).
- C. Chipot and A. Pohorille Eds., Free Energy Calculations, Springer Series in Chemical Physics86. Springer (2007).
- E. Darve and A. Pohorille, Calculating free energy using average forces. J. Chem. Phys.115 (2001) 9169–9183.
- R. Dautray and P.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Springer Verlag (1999).
- A. Dermoune, Propagation and conditional propagation of chaos for pressureless gas equations. Prob. Theor. Relat. Fields126 (2003) 459–479.
- J. Hénin and C. Chipot, Overcoming free energy barriers using unconstrained molecular dynamics simulations. J. Chem. Phys.121 (2004) 2904–2914.
- N.V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift. Prob. Theor. Relat. Fields131 (2005) 154–196.
- T. Lelièvre, M. Rousset and G. Stoltz, Computation of free energy profiles with parallel adaptive dynamics. J. Chem. Phys.126 (2007) 134111.
- T. Lelièvre, M. Rousset and G. Stoltz, Long-time convergence of an adaptive biasing force method. Nonlinearity21 (2008) 1155–1181.
- J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod (1969).
- J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris (1968–1970).
- P. Metzner, C. Schütte and E. Vanden-Eijnden, Illustration of transition path theory on a collection of simple examples. J. Chem. Phys.125 (2006) 084110.
- A.S. Sznitman, Topics in propagation of chaos, Lecture notes in mathematics1464. Springer-Verlag (1989).
- D. Talay and O. Vaillant, A stochastic particle method with random weights for the computation of statistical solutions of McKean-Vlasov equations. Ann. Appl. Prob.13 (2003) 140–180.
- R. Temam, Navier-Stokes equations and nonlinear functionnal analysis. North Holland, Amsterdam (1979).
- V.C. Tran, A wavelet particle approximation for McKean-Vlasov and 2D-Navier-Stokes statistical solutions. Stoch. Proc. Appl.118 (2008) 284–318.
- A.B. Tsybakov, Introduction à l'estimation non-paramétrique. Springer (2004).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.