Morphisms fixing words associated with exchange of three intervals
Petr Ambrož; Zuzana Masáková; Edita Pelantová
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 44, Issue: 1, page 3-17
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topAmbrož, Petr, Masáková, Zuzana, and Pelantová, Edita. "Morphisms fixing words associated with exchange of three intervals." RAIRO - Theoretical Informatics and Applications 44.1 (2010): 3-17. <http://eudml.org/doc/250796>.
@article{Ambrož2010,
abstract = {
We consider words coding exchange of three intervals with
permutation (3,2,1), here called 3iet words. Recently, a
characterization of substitution invariant 3iet words was
provided. We study the opposite question: what are the morphisms
fixing a 3iet word? We reveal a narrow connection of such
morphisms and morphisms fixing Sturmian words using the new notion
of amicability.
},
author = {Ambrož, Petr, Masáková, Zuzana, Pelantová, Edita},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Interval exchange transformation; Sturmian morphisms; substitution invariance.; interval exchange transformation; substitution invariance},
language = {eng},
month = {2},
number = {1},
pages = {3-17},
publisher = {EDP Sciences},
title = {Morphisms fixing words associated with exchange of three intervals},
url = {http://eudml.org/doc/250796},
volume = {44},
year = {2010},
}
TY - JOUR
AU - Ambrož, Petr
AU - Masáková, Zuzana
AU - Pelantová, Edita
TI - Morphisms fixing words associated with exchange of three intervals
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/2//
PB - EDP Sciences
VL - 44
IS - 1
SP - 3
EP - 17
AB -
We consider words coding exchange of three intervals with
permutation (3,2,1), here called 3iet words. Recently, a
characterization of substitution invariant 3iet words was
provided. We study the opposite question: what are the morphisms
fixing a 3iet word? We reveal a narrow connection of such
morphisms and morphisms fixing Sturmian words using the new notion
of amicability.
LA - eng
KW - Interval exchange transformation; Sturmian morphisms; substitution invariance.; interval exchange transformation; substitution invariance
UR - http://eudml.org/doc/250796
ER -
References
top- B. Adamczewski, Codages de rotations et phénomènes d'autosimilarité. J. Théor. Nombres Bordeaux14 (2002) 351–386.
- C. Allauzen, Une caractérisation simple des nombres de Sturm. J. Théor. Nombres Bordeaux10 (1998) 237–241.
- P. Arnoux, V. Berthé, Z. Masáková and E. Pelantová, Sturm numbers and substitution invariance of 3iet words. Integers8 (2008) 17 (electronic).
- P. Baláži, Z. Masáková and E. Pelantová, Complete characterization of substitution invariant Sturmian sequences. Integers5 (2005) 23 (electronic).
- P. Baláži, Z. Masáková and E. Pelantová, Characterization of substitution invariant 3iet words. Integers8 (2008) 21 (electronic).
- J. Berstel and P. Séébold, Morphismes de Sturm. Bull. Belg. Math. Soc. Simon Stevin1 (1994) 175–189. Journées Montoises (Mons, 1992).
- V. Berthé, H. Ei, S. Ito and H. Rao, On substitution invariant Sturmian words: an application of Rauzy fractals. RAIRO-Theor. Inf. Appl.41 (2007) 329–349.
- M.D. Boshernitzan and C.R. Carroll, An extension of Lagrange's theorem to interval exchange transformations over quadratic fields. J. Anal. Math.72 (1997) 21–44.
- D. Crisp, W. Moran, A. Pollington and P. Shiue, Substitution invariant cutting sequences. J. Théor. Nombres Bordeaux5 (1993) 123–137.
- S. Ferenczi, C. Holton and L.Q. Zamboni, Structure of three interval exchange transformations. I. An arithmetic study. Ann. Inst. Fourier51 (2001) 861–901.
- S. Ferenczi, C. Holton and L.Q. Zamboni, Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories. J. Anal. Math.89 (2003) 239–276.
- S. Ferenczi, C. Holton and L.Q. Zamboni, Structure of three-interval exchange transformations III: ergodic and spectral properties. J. Anal. Math.93 (2004) 103–138.
- M. Fiedler, Special matrices and their applications in numerical mathematics. Martinus Nijhoff Publishers, Dordrecht (1986). Translated from the Czech by Petr Přikryl and Karel Segeth.
- T. Komatsu and A.J. van der Poorten, Substitution invariant Beatty sequences. Jpn J. Math. (N.S.)22 (1996) 349–354.
- F. Mignosi and P. Séébold, Morphismes sturmiens et règles de Rauzy. J. Théor. Nombres Bordeaux5 (1993) 221–233.
- B. Parvaix, Substitution invariant Sturmian bisequences. J. Théor. Nombres Bordeaux11 (1999) 201–210. Les XXèmes Journées Arithmétiques (Limoges, 1997).
- M. Queffélec, Substitution dynamical systems–spectral analysis. Lect. Notes Math. 1294 (1987).
- P. Séébold, Fibonacci morphisms and Sturmian words. Theoret. Comput. Sci.88 (1991) 365–384.
- S.-I. Yasutomi, On Sturmian sequences which are invariant under some substitutions. In Number theory and its applications (Kyoto, 1997), Dev. Math.2, Kluwer Acad. Publ. (1999) 347–373.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.