Failure of the Hasse principle for Châtelet surfaces in characteristic
Bianca Viray[1]
- [1] Mathematics Department Box 1917 Brown University Providence, RI 02912 USA
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 1, page 231-236
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- Y. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne. Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthier-Villars, Paris, 1971, 401–411. Zbl0239.14010MR427322
- Philippe Gille, Tamás Szamuely, Central simple algebras and Galois cohomology. Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge, 2006. Zbl1137.12001MR2266528
- Jun-ichi Igusa, An introduction to the theory of local zeta functions. AMS/IP Studies in Advanced Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2000. Zbl0959.11047MR1743467
- Jürgen Neukirch, Algebraic number theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder, Springer-Verlag, Berlin, 1999. Zbl0956.11021MR1697859
- Bjorn Poonen, Existence of rational points on smooth projective varieties. J. Eur. Math. Soc. (JEMS) 11 (2009), no. 3, 529–543. Zbl1183.14032MR2505440
- Bjorn Poonen, Insufficiency of the Brauer-Manin obstruction applied to étale covers. Ann. of Math. (2) 171 (2010), no. 3, 2157–2169. Zbl1284.11096MR2680407
- Jean-Pierre Serre, Local fields. Graduate Texts in Mathematics, vol. 67, Translated from the French by Marvin Jay Greenberg, Springer-Verlag, New York, 1979. Zbl0423.12016MR554237
- Alexei Skorobogatov, Torsors and rational points. Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. Zbl0972.14015MR1845760