Displaying similar documents to “Failure of the Hasse principle for Châtelet surfaces in characteristic 2

On a dynamical Brauer–Manin obstruction

Liang-Chung Hsia, Joseph Silverman (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let ϕ : X X be a morphism of a variety defined over a number field  K , let  V X be a K -subvariety, and let  𝒪 ϕ ( P ) = { ϕ n ( P ) : n 0 } be the orbit of a point  P X ( K ) . We describe a local-global principle for the intersection  V 𝒪 ϕ ( P ) . This principle may be viewed as a dynamical analog of the Brauer–Manin obstruction. We show that the rational points of  V ( K ) are Brauer–Manin unobstructed for power maps on  2 in two cases: (1)  V is a translate of a torus. (2)  V is a line and  P has a preperiodic coordinate. A key tool in the proofs is the...

Conjugacy classes of series in positive characteristic and Witt vectors.

Sandrine Jean (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let k be the algebraic closure of 𝔽 p and K be the local field of formal power series with coefficients in k . The aim of this paper is the description of the set 𝒴 n of conjugacy classes of series of order p n for the composition law. This work is concerned with the formal power series with coefficients in a field of characteristic p which are invertible and of finite order p n for the composition law. In order to investigate Oort’s conjecture, I give a description of conjugacy classes of series...

On the trace of the ring of integers of an abelian number field

Kurt Girstmair (1992)

Acta Arithmetica

Similarity:

Let K, L be algebraic number fields with K ⊆ L, and O K , O L their respective rings of integers. We consider the trace map T = T L / K : L K and the O K -ideal T ( O L ) O K . By I(L/K) we denote the group indexof T ( O L ) in O K (i.e., the norm of T ( O L ) over ℚ). It seems to be difficult to determine I(L/K) in the general case. If K and L are absolutely abelian number fields, however, we obtain a fairly explicit description of the number I(L/K). This is a consequence of our description of the Galois module structure of T ( O L ) (Theorem 1)....

On the linear independence of p -adic L -functions modulo p

Bruno Anglès, Gabriele Ranieri (2010)

Annales de l’institut Fourier

Similarity:

Let p 3 be a prime. Let n such that n 1 , let χ 1 , ... , χ n be characters of conductor d not divided by p and let ω be the Teichmüller character. For all i between 1 and n , for all j between 0 and ( p - 3 ) / 2 , set θ i , j = χ i ω 2 j + 1 if χ i is odd ; χ i ω 2 j if χ i is even . Let K = p ( χ 1 , ... , χ n ) and let π be a prime of the valuation ring 𝒪 K of K . For all i , j let f ( T , θ i , j ) be the Iwasawa series associated to θ i , j and f ( T , θ i , j ) ¯ its reduction modulo ( π ) . Finally let 𝔽 p ¯ be an algebraic closure of 𝔽 p . Our main result is that if the characters χ i are all distinct modulo ( π ) , then 1 and the series...

Wintenberger’s functor for abelian extensions

Kevin Keating (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let k be a finite field. Wintenberger used the field of norms to give an equivalence between a category whose objects are totally ramified abelian p -adic Lie extensions E / F , where F is a local field with residue field k , and a category whose objects are pairs ( K , A ) , where K k ( ( T ) ) and A is an abelian p -adic Lie subgroup of Aut k ( K ) . In this paper we extend this equivalence to allow Gal ( E / F ) and A to be arbitrary abelian pro- p groups.

Kloosterman sums for prime powers in -adic fields

Stanley J. Gurak (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let K be a field of degree n over Q p , the field of rational p -adic numbers, say with residue degree f , ramification index e and differential exponent d . Let O be the ring of integers of K and P its unique prime ideal. The trace and norm maps for K / Q p are denoted T r and N , respectively. Fix q = p r , a power of a prime p , and let η be a numerical character defined modulo q and of order o ( η ) . The character η extends to the ring of p -adic integers p in the natural way; namely η ( u ) = η ( u ˜ ) , where u ˜ denotes the residue...