Galois Covers and the Hilbert-Grunwald Property

Pierre Dèbes[1]; Nour Ghazi[2]

  • [1] Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France)
  • [2] Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France) Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 3, page 989-1013
  • ISSN: 0373-0956

Abstract

top
Our main result combines three topics: it contains a Grunwald-Wang type conclusion, a version of Hilbert’s irreducibility theorem and a p -adic form à la Harbater, but with good reduction, of the Regular Inverse Galois Problem. As a consequence we obtain a statement that questions the RIGP over . The general strategy is to study and exploit the good reduction of certain twisted models of the covers and of the associated moduli spaces.

How to cite

top

Dèbes, Pierre, and Ghazi, Nour. "Galois Covers and the Hilbert-Grunwald Property." Annales de l’institut Fourier 62.3 (2012): 989-1013. <http://eudml.org/doc/251131>.

@article{Dèbes2012,
abstract = {Our main result combines three topics: it contains a Grunwald-Wang type conclusion, a version of Hilbert’s irreducibility theorem and a $p$-adic form à la Harbater, but with good reduction, of the Regular Inverse Galois Problem. As a consequence we obtain a statement that questions the RIGP over $\mathbb\{Q\}$. The general strategy is to study and exploit the good reduction of certain twisted models of the covers and of the associated moduli spaces.},
affiliation = {Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France); Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France) Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France)},
author = {Dèbes, Pierre, Ghazi, Nour},
journal = {Annales de l’institut Fourier},
keywords = {Inverse Galois theory; Grunwald’s problem; Hilbert’s irreducibility theorem; algebraic covers; local and global fields; Hurwitz spaces; Grunwald's problem; inverse Galois theory},
language = {eng},
number = {3},
pages = {989-1013},
publisher = {Association des Annales de l’institut Fourier},
title = {Galois Covers and the Hilbert-Grunwald Property},
url = {http://eudml.org/doc/251131},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Dèbes, Pierre
AU - Ghazi, Nour
TI - Galois Covers and the Hilbert-Grunwald Property
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 989
EP - 1013
AB - Our main result combines three topics: it contains a Grunwald-Wang type conclusion, a version of Hilbert’s irreducibility theorem and a $p$-adic form à la Harbater, but with good reduction, of the Regular Inverse Galois Problem. As a consequence we obtain a statement that questions the RIGP over $\mathbb{Q}$. The general strategy is to study and exploit the good reduction of certain twisted models of the covers and of the associated moduli spaces.
LA - eng
KW - Inverse Galois theory; Grunwald’s problem; Hilbert’s irreducibility theorem; algebraic covers; local and global fields; Hurwitz spaces; Grunwald's problem; inverse Galois theory
UR - http://eudml.org/doc/251131
ER -

References

top
  1. Michael Artin, Alexandre Grothendieck, Jean.-Louis Verdier, SGA 4 Théorie des Topos et Cohomologie Étale des Schémas, 269, 270, 305 (1973), Springer MR354654
  2. Sybilla Beckmann, On extensions of number fields obtained by specializing branched coverings, J. Reine Angew. Math. 419 (1991), 27-53 Zbl0721.11052MR1116916
  3. Pierre Dèbes, Covers of P 1 over the p -adics, Recent developments in the Inverse Galois Problem 186 (1995), 217-238, Cambridge University Press Zbl0856.12004MR1352273
  4. Pierre Dèbes, Galois covers with prescribed fibers: the Beckmann-Black problem, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 28 (1999), 273-286 Zbl0954.12002MR1736229
  5. Pierre Dèbes, Some arithmetic properties of algebraic covers, Aspects of Galois Theory 256 (1999), 66-84, Cambridge University Press Zbl0977.14009MR1708602
  6. Pierre Dèbes, Théorème d’existence de Riemann, Arithmétique des revêtements algébriques 5 (2001), 27-41, SMF 
  7. Pierre Dèbes, Arithmétique des revêtements de la droite, Lecture Notes 2009/10 (2009) 
  8. Pierre Dèbes, Jean-Claude Douai, Algebraic covers: field of moduli versus field of definition, Annales Sci. E.N.S. 30 (1997), 303-338 Zbl0906.12001MR1443489
  9. Pierre Dèbes, Jean-Claude Douai, Laurent Moret-Bailly, Descent Varieties for Algebraic Covers, J. Reine Angew. Math. 574 (2004), 51-78 Zbl1077.14019MR2099109
  10. Pierre Dèbes, Michel Emsalem, Harbater-Mumford Components and Hurwitz Towers, J. Math. Inst. Jussieu 5 (2006), 351-371 MR2243760
  11. Pierre Dèbes, Nour Ghazi, Specializations of Galois Covers of the line, Alexandru Myller Mathematical Seminar, Proceedings of the Centennial Conference 1329 (2011), 98-108, V. Barbu and O. Carja, Eds MR2752504
  12. Pierre Dèbes, Yann Walkowiak, Bounds for Hilbert’s Irreducibility Theorem, Pure & Applied Math. Quarterly 4/4 (2008), 1059-1083 Zbl1213.12005MR2441693
  13. Pierre Deligne, La conjecture de Weil I, Publ. Math. IHES 43 (1974), 273-308 Zbl0287.14001MR340258
  14. Pierre Deligne, La conjecture de Weil II, Publ. Math. IHES 52 (1980), 137-252 Zbl0456.14014MR601520
  15. Bruno Deschamps, Existence de points p -adiques pour tout p sur un espace de Hurwitz, Recent developments in the Inverse Galois Problem 186 (1995), 239-247, Cambridge University Press Zbl0838.14019MR1352274
  16. Martin Eichler, Zum Hilbertschen Irreduzibilittssatz, Math. Ann. 116 (1939), 742-748 Zbl0021.00705MR1513256
  17. Torsten Ekedahl, An effective version of Hilbert’s irreducibility theorem, Séminaire de Théorie des Nombres, Paris 1988/1989 91 (1990), 241-248, Birkhäuser Zbl0729.12005MR1104709
  18. Michael D. Fried, On Hilbert’s irreducibility theorem, J. Number Theory 6 (1974), 211-231 Zbl0299.12002MR349624
  19. Michael D. Fried, Introduction to modular towers: generalizing dihedral group–modular curve connections, Recent developments in the inverse Galois problem 186 (1995), 111-171, Amer. Math. Soc., Providence, RI Zbl0957.11047MR1352270
  20. Michael D. Fried, Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Ann. 290 (1991), 771-800 Zbl0763.12004MR1119950
  21. William Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2) 90 (1969), 542-575 Zbl0194.21901MR260752
  22. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967) Zbl0144.19904MR238860
  23. Alexandre Grothendieck, Revêtements étales et groupe fondamental, 224 (1971), Springer MR354651
  24. Alexandre Grothendieck, SGA 5 Cohomologie -adique et Fonctions L , 589 (1973), Springer-Verlag MR354654
  25. Alexandre Grothendieck, Jacob P. Murre, The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme, 208 (1971), Springer Zbl0216.33001MR316453
  26. David Harbater, Galois coverings of the arithmetic line, Lecture Notes in Math. 1240 (1987), 165-195 Zbl0627.12015MR894511
  27. Camille Jordan, Recherches sur les substitutions, J. Liouville 17 (1872), 351-367 
  28. J. C. Lagarias, H. L. Montgomery, A. M. Odlyzko, A Bound for the Least Prime Ideal in the Chebotarev Density Theorem, Invent. Math. 54 (1979), 271-296 Zbl0401.12014MR553223
  29. J. C. Lagarias, A. M. Odlyzko, Effective versions of the Chebotarev Density Theorem, Algebraic Number Fields (1977), 409-464, Academic Press, New-York Zbl0362.12011MR447191
  30. James S. Milne, Etale Cohomology, 33 (1980), Princeton University Press Zbl0433.14012MR559531
  31. Laurent Moret-Bailly, Groupes de Picard et problèmes de Skolem II, Annales Sci. E.N.S. 22 (1989), 181-194 Zbl0704.14015MR1005158
  32. Laurent Moret-Bailly, Problèmes de Skolem sur les champs algébriques, Comp. Math. 125 (2001), 1-30 Zbl1106.11022MR1818054
  33. Jürgen Neukirch, On solvable number fields, Invent. Math. 53 (1979), 135-164 Zbl0447.12008MR560411
  34. Jürgen Neukirch, Alexander Schmidt, Kay Wingberg, Cohomology of number fields, 323 (2008), Springer-Verlag, Berlin Zbl1136.11001MR2392026
  35. Bernat Plans, Nuria Vila, Galois covers of P 1 over Q with prescribed local or global behavior by specialization, J. Théorie des Nombres Bordeaux 17 (2005), 271-282 Zbl1087.11068MR2152224
  36. Florian Pop, Embedding problems over large fields, Annals of Math. 144 (1996), 1-35 Zbl0862.12003MR1405941
  37. David J. Saltmann, Generic Galois extensions and Problems in Field Theory, Advances in Math. 43 (1982), 250-283 Zbl0484.12004MR648801
  38. Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Pub. Math. I.H.E.S. 54 (1981), 323-401 Zbl0496.12011MR644559
  39. Jean-Pierre Serre, Topics in Galois Theory, (1992), Jones and Bartlett Publishers Zbl0746.12001MR1162313
  40. Stefan Wewers, Construction of Hurwitz spaces, (1998) Zbl0925.14002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.