Galois Covers and the Hilbert-Grunwald Property
Pierre Dèbes[1]; Nour Ghazi[2]
- [1] Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France)
- [2] Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France) Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 3, page 989-1013
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDèbes, Pierre, and Ghazi, Nour. "Galois Covers and the Hilbert-Grunwald Property." Annales de l’institut Fourier 62.3 (2012): 989-1013. <http://eudml.org/doc/251131>.
@article{Dèbes2012,
abstract = {Our main result combines three topics: it contains a Grunwald-Wang type conclusion, a version of Hilbert’s irreducibility theorem and a $p$-adic form à la Harbater, but with good reduction, of the Regular Inverse Galois Problem. As a consequence we obtain a statement that questions the RIGP over $\mathbb\{Q\}$. The general strategy is to study and exploit the good reduction of certain twisted models of the covers and of the associated moduli spaces.},
affiliation = {Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France); Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France) Université Lille 1 Laboratoire Paul Painlevé Mathématiques 59655 Villeneuve d’Ascq Cedex (France)},
author = {Dèbes, Pierre, Ghazi, Nour},
journal = {Annales de l’institut Fourier},
keywords = {Inverse Galois theory; Grunwald’s problem; Hilbert’s irreducibility theorem; algebraic covers; local and global fields; Hurwitz spaces; Grunwald's problem; inverse Galois theory},
language = {eng},
number = {3},
pages = {989-1013},
publisher = {Association des Annales de l’institut Fourier},
title = {Galois Covers and the Hilbert-Grunwald Property},
url = {http://eudml.org/doc/251131},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Dèbes, Pierre
AU - Ghazi, Nour
TI - Galois Covers and the Hilbert-Grunwald Property
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 989
EP - 1013
AB - Our main result combines three topics: it contains a Grunwald-Wang type conclusion, a version of Hilbert’s irreducibility theorem and a $p$-adic form à la Harbater, but with good reduction, of the Regular Inverse Galois Problem. As a consequence we obtain a statement that questions the RIGP over $\mathbb{Q}$. The general strategy is to study and exploit the good reduction of certain twisted models of the covers and of the associated moduli spaces.
LA - eng
KW - Inverse Galois theory; Grunwald’s problem; Hilbert’s irreducibility theorem; algebraic covers; local and global fields; Hurwitz spaces; Grunwald's problem; inverse Galois theory
UR - http://eudml.org/doc/251131
ER -
References
top- Michael Artin, Alexandre Grothendieck, Jean.-Louis Verdier, SGA 4 Théorie des Topos et Cohomologie Étale des Schémas, 269, 270, 305 (1973), Springer MR354654
- Sybilla Beckmann, On extensions of number fields obtained by specializing branched coverings, J. Reine Angew. Math. 419 (1991), 27-53 Zbl0721.11052MR1116916
- Pierre Dèbes, Covers of P over the -adics, Recent developments in the Inverse Galois Problem 186 (1995), 217-238, Cambridge University Press Zbl0856.12004MR1352273
- Pierre Dèbes, Galois covers with prescribed fibers: the Beckmann-Black problem, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 28 (1999), 273-286 Zbl0954.12002MR1736229
- Pierre Dèbes, Some arithmetic properties of algebraic covers, Aspects of Galois Theory 256 (1999), 66-84, Cambridge University Press Zbl0977.14009MR1708602
- Pierre Dèbes, Théorème d’existence de Riemann, Arithmétique des revêtements algébriques 5 (2001), 27-41, SMF
- Pierre Dèbes, Arithmétique des revêtements de la droite, Lecture Notes 2009/10 (2009)
- Pierre Dèbes, Jean-Claude Douai, Algebraic covers: field of moduli versus field of definition, Annales Sci. E.N.S. 30 (1997), 303-338 Zbl0906.12001MR1443489
- Pierre Dèbes, Jean-Claude Douai, Laurent Moret-Bailly, Descent Varieties for Algebraic Covers, J. Reine Angew. Math. 574 (2004), 51-78 Zbl1077.14019MR2099109
- Pierre Dèbes, Michel Emsalem, Harbater-Mumford Components and Hurwitz Towers, J. Math. Inst. Jussieu 5 (2006), 351-371 MR2243760
- Pierre Dèbes, Nour Ghazi, Specializations of Galois Covers of the line, Alexandru Myller Mathematical Seminar, Proceedings of the Centennial Conference 1329 (2011), 98-108, V. Barbu and O. Carja, Eds MR2752504
- Pierre Dèbes, Yann Walkowiak, Bounds for Hilbert’s Irreducibility Theorem, Pure & Applied Math. Quarterly 4/4 (2008), 1059-1083 Zbl1213.12005MR2441693
- Pierre Deligne, La conjecture de Weil I, Publ. Math. IHES 43 (1974), 273-308 Zbl0287.14001MR340258
- Pierre Deligne, La conjecture de Weil II, Publ. Math. IHES 52 (1980), 137-252 Zbl0456.14014MR601520
- Bruno Deschamps, Existence de points -adiques pour tout sur un espace de Hurwitz, Recent developments in the Inverse Galois Problem 186 (1995), 239-247, Cambridge University Press Zbl0838.14019MR1352274
- Martin Eichler, Zum Hilbertschen Irreduzibilittssatz, Math. Ann. 116 (1939), 742-748 Zbl0021.00705MR1513256
- Torsten Ekedahl, An effective version of Hilbert’s irreducibility theorem, Séminaire de Théorie des Nombres, Paris 1988/1989 91 (1990), 241-248, Birkhäuser Zbl0729.12005MR1104709
- Michael D. Fried, On Hilbert’s irreducibility theorem, J. Number Theory 6 (1974), 211-231 Zbl0299.12002MR349624
- Michael D. Fried, Introduction to modular towers: generalizing dihedral group–modular curve connections, Recent developments in the inverse Galois problem 186 (1995), 111-171, Amer. Math. Soc., Providence, RI Zbl0957.11047MR1352270
- Michael D. Fried, Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Ann. 290 (1991), 771-800 Zbl0763.12004MR1119950
- William Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2) 90 (1969), 542-575 Zbl0194.21901MR260752
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967) Zbl0144.19904MR238860
- Alexandre Grothendieck, Revêtements étales et groupe fondamental, 224 (1971), Springer MR354651
- Alexandre Grothendieck, SGA 5 Cohomologie -adique et Fonctions , 589 (1973), Springer-Verlag MR354654
- Alexandre Grothendieck, Jacob P. Murre, The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme, 208 (1971), Springer Zbl0216.33001MR316453
- David Harbater, Galois coverings of the arithmetic line, Lecture Notes in Math. 1240 (1987), 165-195 Zbl0627.12015MR894511
- Camille Jordan, Recherches sur les substitutions, J. Liouville 17 (1872), 351-367
- J. C. Lagarias, H. L. Montgomery, A. M. Odlyzko, A Bound for the Least Prime Ideal in the Chebotarev Density Theorem, Invent. Math. 54 (1979), 271-296 Zbl0401.12014MR553223
- J. C. Lagarias, A. M. Odlyzko, Effective versions of the Chebotarev Density Theorem, Algebraic Number Fields (1977), 409-464, Academic Press, New-York Zbl0362.12011MR447191
- James S. Milne, Etale Cohomology, 33 (1980), Princeton University Press Zbl0433.14012MR559531
- Laurent Moret-Bailly, Groupes de Picard et problèmes de Skolem II, Annales Sci. E.N.S. 22 (1989), 181-194 Zbl0704.14015MR1005158
- Laurent Moret-Bailly, Problèmes de Skolem sur les champs algébriques, Comp. Math. 125 (2001), 1-30 Zbl1106.11022MR1818054
- Jürgen Neukirch, On solvable number fields, Invent. Math. 53 (1979), 135-164 Zbl0447.12008MR560411
- Jürgen Neukirch, Alexander Schmidt, Kay Wingberg, Cohomology of number fields, 323 (2008), Springer-Verlag, Berlin Zbl1136.11001MR2392026
- Bernat Plans, Nuria Vila, Galois covers of P over Q with prescribed local or global behavior by specialization, J. Théorie des Nombres Bordeaux 17 (2005), 271-282 Zbl1087.11068MR2152224
- Florian Pop, Embedding problems over large fields, Annals of Math. 144 (1996), 1-35 Zbl0862.12003MR1405941
- David J. Saltmann, Generic Galois extensions and Problems in Field Theory, Advances in Math. 43 (1982), 250-283 Zbl0484.12004MR648801
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Pub. Math. I.H.E.S. 54 (1981), 323-401 Zbl0496.12011MR644559
- Jean-Pierre Serre, Topics in Galois Theory, (1992), Jones and Bartlett Publishers Zbl0746.12001MR1162313
- Stefan Wewers, Construction of Hurwitz spaces, (1998) Zbl0925.14002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.