Algebraic covers : field of moduli versus field of definition
Pierre Dèbes; Jean-Claude Douai
Annales scientifiques de l'École Normale Supérieure (1997)
- Volume: 30, Issue: 3, page 303-338
- ISSN: 0012-9593
Access Full Article
topHow to cite
topDèbes, Pierre, and Douai, Jean-Claude. "Algebraic covers : field of moduli versus field of definition." Annales scientifiques de l'École Normale Supérieure 30.3 (1997): 303-338. <http://eudml.org/doc/82433>.
@article{Dèbes1997,
author = {Dèbes, Pierre, Douai, Jean-Claude},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic covers; varieties over fields; Galois covers; obstruction; characteristic classes},
language = {eng},
number = {3},
pages = {303-338},
publisher = {Elsevier},
title = {Algebraic covers : field of moduli versus field of definition},
url = {http://eudml.org/doc/82433},
volume = {30},
year = {1997},
}
TY - JOUR
AU - Dèbes, Pierre
AU - Douai, Jean-Claude
TI - Algebraic covers : field of moduli versus field of definition
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 3
SP - 303
EP - 338
LA - eng
KW - algebraic covers; varieties over fields; Galois covers; obstruction; characteristic classes
UR - http://eudml.org/doc/82433
ER -
References
top- [ArTa] E. ARTIN and J. TATE, Class field theory, W. A. Benjamin, 1967. Zbl0176.33504
- [Be] G. V. BELYI, On Galois extensions of a maximal cyclotomic field, (Math. USSR Izvestija, Vol. 14, 12 1980, pp. 247-256). Zbl0429.12004
- [CoHa] K. COOMBES and D. HARBATER, Hurwitz families and arithmetic Galois groups, (Duke Math. J., 52 1985, pp. 821-839). Zbl0601.14023MR87g:14012
- [CouGr] J-M. COUVEIGNES and L. GRANBOULAN, Dessins from a geometric point of view, in The Grothendieck theory of Dessins d'Enfants, (Leila Schneps ed., Camb. U. Press, 1995, pp. 79-113). Zbl0835.14010MR96b:14015
- [Db1] P. DÈBES, Groupes de Galois sur K(T), (Séminaire de Théorie des Nombres, Bordeaux, 2, 1990, pp. 229-243). Zbl0729.12010MR91m:12004
- [Db2] P. DÈBES, Covers of ℙ1 over the p-adics, “Recent developments in the Inverse Galois Problem”, (Contemporary Math., Vol. 186, 1995, pp. 217-238). Zbl0856.12004MR96g:12005
- [DbDo1] P. DÈBES and J-C. DOUAI, Local-global principle for algebraic covers, Israel J. Math., to appear, 1997. Zbl0915.12003
- [DbDo2] P. DÈBES and J-C. DOUAI, Gerbes and covers, preprint, 1997.
- [DbEm] P. DÈBES and M. EMSALEM, On field of moduli of curves, preprint, 1996.
- [Dew] E. DEW, Fields of moduli of arithmetic covers, Thesis, 1991. Zbl0900.65271
- [Fr] M. FRIED, Fields of definition of function fields and Hurwitz families, Groups as Galois groups, (Comm. in Alg., 1, 1977, pp. 17-82). Zbl0478.12006MR56 #12006
- [Gi] J. GIRAUD, Cohomologie non abélienne, (Grundlehren Math. Wiss. 179, Springer-Verlag, 1971). Zbl0226.14011MR49 #8992
- [Mi] J. S. MILNE, Etale Cohomology, Princeton University Press, 1980. Zbl0433.14012MR81j:14002
- [SGA1] A. GROTHENDIECK et al., Revêtements étales et groupe fondamental, (Séminaire de Géométrie algébrique 1960/1961, Lecture Notes in Math., 224, 1971). Zbl0234.14002
- [Se] J.-P. SERRE, Cohomologie galoisienne, (LNM 5, Springer-Verlag, 4e Edition 1973). Zbl0259.12011MR53 #8030
- [We] A. WEIL, The field of definition of a variety, Oeuvres complètes (Collected papers) II, Springer-Verlag, pp. 291-306.
Citations in EuDML Documents
top- Layla Pharamond dit d'Costa, Comparaison de deux notions de rationalité d'un dessin d'enfant
- Geoffroy Derome, Corps de définition et points rationnels
- Pierre Dèbes, Galois covers with prescribed fibers : the Beckmann-Black problem
- Joseph Oesterlé, Dessins d'enfants
- Aristides Kontogeorgis, Field of moduli versus field of definition for cyclic covers of the projective line
- Layla Pharamond dit d’Costa, Géométrie réelle des dessins d’enfant
- Pierre Dèbes, Jean-Claude Douai, Michel Emsalem, Familles de Hurwitz et cohomologie non abélienne
- Stefan Wewers, Reduction and lifting of special metacyclic covers
- Stéphane Flon, Ramification dans le corps des modules
- Stefan Wewers, Stable reduction of three point covers
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.