Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds

Neil Seshadri

Bulletin de la Société Mathématique de France (2009)

  • Volume: 137, Issue: 1, page 63-91
  • ISSN: 0037-9484

Abstract

top
To any smooth compact manifold M endowed with a contact structure H and partially integrable almost CR structure J , we prove the existence and uniqueness, modulo high-order error terms and diffeomorphism action, of an approximately Einstein ACH (asymptotically complex hyperbolic) metric g on M × ( - 1 , 0 ) . We consider the asymptotic expansion, in powers of a special defining function, of the volume of M × ( - 1 , 0 ) with respect to g and prove that the log term coefficient is independent of J (and any choice of contact form θ ), i.e., is an invariant of the contact structure H . The approximately Einstein ACH metric g is a generalisation of, and exhibits similar asymptotic boundary behaviour to, Fefferman’s approximately Einstein complete Kähler metric g + on strictly pseudoconvex domains. The present work demonstrates that the CR-invariant log term coefficient in the asymptotic volume expansion of g + is in fact a contact invariant. We discuss some implications this may have for CR Q -curvature. The formal power series method of finding g is obstructed at finite order. We show that part of this obstruction is given as a one-form on H * . This is a new result peculiar to the partially integrable setting.

How to cite

top

Seshadri, Neil. "Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds." Bulletin de la Société Mathématique de France 137.1 (2009): 63-91. <http://eudml.org/doc/272398>.

@article{Seshadri2009,
abstract = {To any smooth compact manifold $M$ endowed with a contact structure $H$ and partially integrable almost CR structure $J$, we prove the existence and uniqueness, modulo high-order error terms and diffeomorphism action, of an approximately Einstein ACH (asymptotically complex hyperbolic) metric $g$ on $M\times (-1,0)$. We consider the asymptotic expansion, in powers of a special defining function, of the volume of $M\times (-1,0)$ with respect to $g$ and prove that the log term coefficient is independent of $J$ (and any choice of contact form $\theta $), i.e., is an invariant of the contact structure $H$. The approximately Einstein ACH metric $g$ is a generalisation of, and exhibits similar asymptotic boundary behaviour to, Fefferman’s approximately Einstein complete Kähler metric $g_+$ on strictly pseudoconvex domains. The present work demonstrates that the CR-invariant log term coefficient in the asymptotic volume expansion of $g_+$ is in fact a contact invariant. We discuss some implications this may have for CR $Q$-curvature. The formal power series method of finding $g$ is obstructed at finite order. We show that part of this obstruction is given as a one-form on $H^*$. This is a new result peculiar to the partially integrable setting.},
author = {Seshadri, Neil},
journal = {Bulletin de la Société Mathématique de France},
keywords = {ACH metric; approximately Einstein metric; volume renormalization; contact manifold; almost CR structure; CR $Q$-curvature; CR obstruction tensor; CR -curvature},
language = {eng},
number = {1},
pages = {63-91},
publisher = {Société mathématique de France},
title = {Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds},
url = {http://eudml.org/doc/272398},
volume = {137},
year = {2009},
}

TY - JOUR
AU - Seshadri, Neil
TI - Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 1
SP - 63
EP - 91
AB - To any smooth compact manifold $M$ endowed with a contact structure $H$ and partially integrable almost CR structure $J$, we prove the existence and uniqueness, modulo high-order error terms and diffeomorphism action, of an approximately Einstein ACH (asymptotically complex hyperbolic) metric $g$ on $M\times (-1,0)$. We consider the asymptotic expansion, in powers of a special defining function, of the volume of $M\times (-1,0)$ with respect to $g$ and prove that the log term coefficient is independent of $J$ (and any choice of contact form $\theta $), i.e., is an invariant of the contact structure $H$. The approximately Einstein ACH metric $g$ is a generalisation of, and exhibits similar asymptotic boundary behaviour to, Fefferman’s approximately Einstein complete Kähler metric $g_+$ on strictly pseudoconvex domains. The present work demonstrates that the CR-invariant log term coefficient in the asymptotic volume expansion of $g_+$ is in fact a contact invariant. We discuss some implications this may have for CR $Q$-curvature. The formal power series method of finding $g$ is obstructed at finite order. We show that part of this obstruction is given as a one-form on $H^*$. This is a new result peculiar to the partially integrable setting.
LA - eng
KW - ACH metric; approximately Einstein metric; volume renormalization; contact manifold; almost CR structure; CR $Q$-curvature; CR obstruction tensor; CR -curvature
UR - http://eudml.org/doc/272398
ER -

References

top
  1. [1] A. L. Besse – Einstein Manifolds, Ergeb. Math. Grenzgeb., vol. 10, Springer, 1987. Zbl0613.53001MR867684
  2. [2] O. Biquard – Métriques d’Einstein Asymptotiquement Symétriques, Astérisque, vol. 265, Soc. Math. France, 2000. Zbl0967.53030
  3. [3] O. Biquard & M. Herzlich – « A Burns–Epstein invariant for ACHE 4-manifolds », Duke Math. J.126 (2005), p. 53–100. Zbl1074.53037MR2110628
  4. [4] O. Biquard, M. Herzlich & M. Rumin – « Diabatic limit, eta invariants and Cauchy-Riemann manifolds of dimension 3 », Ann. Sci. Ecole Norm. Sup.40 (2007), p. 589–631. Zbl1188.32010MR2191527
  5. [5] O. Biquard & Y. Rollin – « Wormholes in ACH Einstein manifolds », preprint, arXiv:math.DG/0609558. To appear in Trans. Amer. Math. Soc.. Zbl1225.53043MR2465828
  6. [6] D. E. Blair & S. Dragomir – « Pseudohermitian geometry on contact Riemannian manifolds », Rend. Mat. Ser. VII22 (2002), p. 275–341. Zbl1071.32027MR2041237
  7. [7] L. Boutet de Monvel – « Logarithmic trace of Toeplitz projectors », Math. Res. Lett.12 (2005), p. 401–412. Zbl1135.47022MR2150893
  8. [8] —, « Vanishing of the logarithmic trace of generalized Szëgo projectors », in Algebraic Analysis of Differential Equations: In Honor of Prof. Takahiro Kawai on the Occasion of His Sixtieth Birthday (T. Aoki, Y. Takei, N. Tose & H. Majima, éds.), Springer, 2007, preprint arXiv:math.AP/0604166. MR2790979
  9. [9] C. L. Epstein, R. B. Melrose & G. A. Mendoza – « Resolvent of the Laplacian on strictly pseudoconvex domains », Acta Math.167 (1991), p. 1–106. Zbl0758.32010MR1111745
  10. [10] M. Falcitelli, A. Farinola & S. Salamon – « Almost-Hermitian geometry », Diff. Geom. Appl.4 (1994), p. 259–282. Zbl0813.53044MR1299398
  11. [11] C. Fefferman – « Monge-Ampére equations, the Bergman kernel, and the geometry of pseudoconvex domains », Ann. of Math. 103 (1976), p. 395–416, correction: 104 (1976), 393–394. Zbl0332.32018MR407320
  12. [12] C. Fefferman & C. R. Graham – « Q -curvature and Poincaré metrics », Math. Res. Lett.9 (2002), p. 139–151. Zbl1016.53031MR1909634
  13. [13] —, « The ambient metric », preprint, arXiv:0710.0919. 
  14. [14] C. Fefferman & K. Hirachi – « Ambient metric construction of Q -curvature in conformal and CR geometries », Math. Res. Lett.10 (2003), p. 819–831. Zbl1166.53309MR2025058
  15. [15] P. Gauduchon – « Hermitian connections and Dirac operators », Boll. Un. Mat. Ital. B (7), suppl. fasc. 2, 11 (1997), p. 257–288. Zbl0876.53015MR1456265
  16. [16] P. B. Gilkey – « Local invariants of an embedded Riemannian manifold », Ann. of Math.102 (1975), p. 187–203. Zbl0312.53014MR394693
  17. [17] A. R. Gover & L. J. Peterson – « The ambient obstruction tensor and the conformal deformation complex », Pacific J. Math.226 (2006), p. 309–351. Zbl1125.53010MR2247867
  18. [18] C. R. Graham – « Higher asymptotics of the complex Monge–Ampére equation », Compos. Math.64 (1987), p. 133–155. Zbl0628.32033MR916479
  19. [19] —, « Volume and area renormalizations for conformally compact Einstein metrics », Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), p. 31–42. Zbl0984.53020MR1758076
  20. [20] C. R. Graham & K. Hirachi – « The ambient obstruction tensor and Q -curvature », in AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys., vol. 8, Eur. Math. Soc., 2005, p. 59–71. Zbl1074.53027MR2160867
  21. [21] A. Gray – « Some global proerties of contact structures », Ann. of Math.69 (1959), p. 421–450. Zbl0092.39301MR112161
  22. [22] C. Guillarmou & A. Sá Barreto – « Scattering and inverse scattering on ACH manifolds », J. reine angew Math.622 (2008), p. 1–55. Zbl1159.58016MR2433611
  23. [23] M. Herzlich – « A remark on renormalized volume and Euler characteristic for ACHE 4-manifolds », Diff. Geom. Appl.25 (2007), p. 78–91. Zbl1129.53027MR2293643
  24. [24] J. Lee & R. B. Melrose – « Boundary behaviour of the complex Monge-Ampére equation », Acta Math.148 (1982), p. 159–192. Zbl0496.35042MR666109
  25. [25] L. I. Nicolaescu – « Geometric connections and geometric Dirac operators on contact manifolds », Diff. Geom. Appl.22 (2005), p. 355–378. Zbl1077.53017MR2166128
  26. [26] R. Ponge – « Noncommutative residue invariants for CR and contact manifolds », J. reine angew Math.614 (2008), p. 117–151. Zbl1140.58010MR2376284
  27. [27] J. C. Roth – « Perturbations of Kähler–Einstein metrics »,, PhD thesis, University of Washington, 1999. 
  28. [28] M. Rumin & N. Seshadri – « Analytic torsions on contact manifolds », preprint, arXiv:0802.0123. Zbl1264.58027MR2985515
  29. [29] N. Seshadri – « Volume renormalization for complete Einstein–Kähler metrics », Diff. Geom. Appl.25 (2007), p. 356–379. Zbl1152.32017MR2345277
  30. [30] —, « Kanbi Einstein–Kähler keiry o ¯ no taiseki kurikomi (Volume renormalisation for complete Einstein–Kähler metrics) »,, Masters thesis, University of Tokyo, 2005. 
  31. [31] N. Tanaka – A Differential Study on Strongly Pseudo-convex Manifolds, Lectures in Mathematics, vol. 9, Department of Mathematics, Kyoto University, Kinokuniya Book-Store Co., Ltd., 1975. Zbl0331.53025MR399517
  32. [32] S. Tanno – « Variational problems on contact Riemannian manifolds », Trans. Amer. Math. Soc.314 (1989), p. 349–379. Zbl0677.53043MR1000553
  33. [33] S. M. Webster – « Pseudo-hermitian structures on a real hypersurface », J. Differential Geom.13 (1978), p. 25–41. Zbl0379.53016MR520599

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.