Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds
Bulletin de la Société Mathématique de France (2009)
- Volume: 137, Issue: 1, page 63-91
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topSeshadri, Neil. "Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds." Bulletin de la Société Mathématique de France 137.1 (2009): 63-91. <http://eudml.org/doc/272398>.
@article{Seshadri2009,
abstract = {To any smooth compact manifold $M$ endowed with a contact structure $H$ and partially integrable almost CR structure $J$, we prove the existence and uniqueness, modulo high-order error terms and diffeomorphism action, of an approximately Einstein ACH (asymptotically complex hyperbolic) metric $g$ on $M\times (-1,0)$.
We consider the asymptotic expansion, in powers of a special defining function, of the volume of $M\times (-1,0)$ with respect to $g$ and prove that the log term coefficient is independent of $J$ (and any choice of contact form $\theta $), i.e., is an invariant of the contact structure $H$.
The approximately Einstein ACH metric $g$ is a generalisation of, and exhibits similar asymptotic boundary behaviour to, Fefferman’s approximately Einstein complete Kähler metric $g_+$ on strictly pseudoconvex domains. The present work demonstrates that the CR-invariant log term coefficient in the asymptotic volume expansion of $g_+$ is in fact a contact invariant. We discuss some implications this may have for CR $Q$-curvature.
The formal power series method of finding $g$ is obstructed at finite order. We show that part of this obstruction is given as a one-form on $H^*$. This is a new result peculiar to the partially integrable setting.},
author = {Seshadri, Neil},
journal = {Bulletin de la Société Mathématique de France},
keywords = {ACH metric; approximately Einstein metric; volume renormalization; contact manifold; almost CR structure; CR $Q$-curvature; CR obstruction tensor; CR -curvature},
language = {eng},
number = {1},
pages = {63-91},
publisher = {Société mathématique de France},
title = {Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds},
url = {http://eudml.org/doc/272398},
volume = {137},
year = {2009},
}
TY - JOUR
AU - Seshadri, Neil
TI - Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 1
SP - 63
EP - 91
AB - To any smooth compact manifold $M$ endowed with a contact structure $H$ and partially integrable almost CR structure $J$, we prove the existence and uniqueness, modulo high-order error terms and diffeomorphism action, of an approximately Einstein ACH (asymptotically complex hyperbolic) metric $g$ on $M\times (-1,0)$.
We consider the asymptotic expansion, in powers of a special defining function, of the volume of $M\times (-1,0)$ with respect to $g$ and prove that the log term coefficient is independent of $J$ (and any choice of contact form $\theta $), i.e., is an invariant of the contact structure $H$.
The approximately Einstein ACH metric $g$ is a generalisation of, and exhibits similar asymptotic boundary behaviour to, Fefferman’s approximately Einstein complete Kähler metric $g_+$ on strictly pseudoconvex domains. The present work demonstrates that the CR-invariant log term coefficient in the asymptotic volume expansion of $g_+$ is in fact a contact invariant. We discuss some implications this may have for CR $Q$-curvature.
The formal power series method of finding $g$ is obstructed at finite order. We show that part of this obstruction is given as a one-form on $H^*$. This is a new result peculiar to the partially integrable setting.
LA - eng
KW - ACH metric; approximately Einstein metric; volume renormalization; contact manifold; almost CR structure; CR $Q$-curvature; CR obstruction tensor; CR -curvature
UR - http://eudml.org/doc/272398
ER -
References
top- [1] A. L. Besse – Einstein Manifolds, Ergeb. Math. Grenzgeb., vol. 10, Springer, 1987. Zbl0613.53001MR867684
- [2] O. Biquard – Métriques d’Einstein Asymptotiquement Symétriques, Astérisque, vol. 265, Soc. Math. France, 2000. Zbl0967.53030
- [3] O. Biquard & M. Herzlich – « A Burns–Epstein invariant for ACHE 4-manifolds », Duke Math. J.126 (2005), p. 53–100. Zbl1074.53037MR2110628
- [4] O. Biquard, M. Herzlich & M. Rumin – « Diabatic limit, eta invariants and Cauchy-Riemann manifolds of dimension 3 », Ann. Sci. Ecole Norm. Sup.40 (2007), p. 589–631. Zbl1188.32010MR2191527
- [5] O. Biquard & Y. Rollin – « Wormholes in ACH Einstein manifolds », preprint, arXiv:math.DG/0609558. To appear in Trans. Amer. Math. Soc.. Zbl1225.53043MR2465828
- [6] D. E. Blair & S. Dragomir – « Pseudohermitian geometry on contact Riemannian manifolds », Rend. Mat. Ser. VII22 (2002), p. 275–341. Zbl1071.32027MR2041237
- [7] L. Boutet de Monvel – « Logarithmic trace of Toeplitz projectors », Math. Res. Lett.12 (2005), p. 401–412. Zbl1135.47022MR2150893
- [8] —, « Vanishing of the logarithmic trace of generalized Szëgo projectors », in Algebraic Analysis of Differential Equations: In Honor of Prof. Takahiro Kawai on the Occasion of His Sixtieth Birthday (T. Aoki, Y. Takei, N. Tose & H. Majima, éds.), Springer, 2007, preprint arXiv:math.AP/0604166. MR2790979
- [9] C. L. Epstein, R. B. Melrose & G. A. Mendoza – « Resolvent of the Laplacian on strictly pseudoconvex domains », Acta Math.167 (1991), p. 1–106. Zbl0758.32010MR1111745
- [10] M. Falcitelli, A. Farinola & S. Salamon – « Almost-Hermitian geometry », Diff. Geom. Appl.4 (1994), p. 259–282. Zbl0813.53044MR1299398
- [11] C. Fefferman – « Monge-Ampére equations, the Bergman kernel, and the geometry of pseudoconvex domains », Ann. of Math. 103 (1976), p. 395–416, correction: 104 (1976), 393–394. Zbl0332.32018MR407320
- [12] C. Fefferman & C. R. Graham – « -curvature and Poincaré metrics », Math. Res. Lett.9 (2002), p. 139–151. Zbl1016.53031MR1909634
- [13] —, « The ambient metric », preprint, arXiv:0710.0919.
- [14] C. Fefferman & K. Hirachi – « Ambient metric construction of -curvature in conformal and CR geometries », Math. Res. Lett.10 (2003), p. 819–831. Zbl1166.53309MR2025058
- [15] P. Gauduchon – « Hermitian connections and Dirac operators », Boll. Un. Mat. Ital. B (7), suppl. fasc. 2, 11 (1997), p. 257–288. Zbl0876.53015MR1456265
- [16] P. B. Gilkey – « Local invariants of an embedded Riemannian manifold », Ann. of Math.102 (1975), p. 187–203. Zbl0312.53014MR394693
- [17] A. R. Gover & L. J. Peterson – « The ambient obstruction tensor and the conformal deformation complex », Pacific J. Math.226 (2006), p. 309–351. Zbl1125.53010MR2247867
- [18] C. R. Graham – « Higher asymptotics of the complex Monge–Ampére equation », Compos. Math.64 (1987), p. 133–155. Zbl0628.32033MR916479
- [19] —, « Volume and area renormalizations for conformally compact Einstein metrics », Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), p. 31–42. Zbl0984.53020MR1758076
- [20] C. R. Graham & K. Hirachi – « The ambient obstruction tensor and -curvature », in AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys., vol. 8, Eur. Math. Soc., 2005, p. 59–71. Zbl1074.53027MR2160867
- [21] A. Gray – « Some global proerties of contact structures », Ann. of Math.69 (1959), p. 421–450. Zbl0092.39301MR112161
- [22] C. Guillarmou & A. Sá Barreto – « Scattering and inverse scattering on ACH manifolds », J. reine angew Math.622 (2008), p. 1–55. Zbl1159.58016MR2433611
- [23] M. Herzlich – « A remark on renormalized volume and Euler characteristic for ACHE 4-manifolds », Diff. Geom. Appl.25 (2007), p. 78–91. Zbl1129.53027MR2293643
- [24] J. Lee & R. B. Melrose – « Boundary behaviour of the complex Monge-Ampére equation », Acta Math.148 (1982), p. 159–192. Zbl0496.35042MR666109
- [25] L. I. Nicolaescu – « Geometric connections and geometric Dirac operators on contact manifolds », Diff. Geom. Appl.22 (2005), p. 355–378. Zbl1077.53017MR2166128
- [26] R. Ponge – « Noncommutative residue invariants for CR and contact manifolds », J. reine angew Math.614 (2008), p. 117–151. Zbl1140.58010MR2376284
- [27] J. C. Roth – « Perturbations of Kähler–Einstein metrics »,, PhD thesis, University of Washington, 1999.
- [28] M. Rumin & N. Seshadri – « Analytic torsions on contact manifolds », preprint, arXiv:0802.0123. Zbl1264.58027MR2985515
- [29] N. Seshadri – « Volume renormalization for complete Einstein–Kähler metrics », Diff. Geom. Appl.25 (2007), p. 356–379. Zbl1152.32017MR2345277
- [30] —, « Kanbi Einstein–Kähler keiry no taiseki kurikomi (Volume renormalisation for complete Einstein–Kähler metrics) »,, Masters thesis, University of Tokyo, 2005.
- [31] N. Tanaka – A Differential Study on Strongly Pseudo-convex Manifolds, Lectures in Mathematics, vol. 9, Department of Mathematics, Kyoto University, Kinokuniya Book-Store Co., Ltd., 1975. Zbl0331.53025MR399517
- [32] S. Tanno – « Variational problems on contact Riemannian manifolds », Trans. Amer. Math. Soc.314 (1989), p. 349–379. Zbl0677.53043MR1000553
- [33] S. M. Webster – « Pseudo-hermitian structures on a real hypersurface », J. Differential Geom.13 (1978), p. 25–41. Zbl0379.53016MR520599
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.