Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation
Eric Lombardi; Laurent Stolovitch
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 4, page 659-718
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topLombardi, Eric, and Stolovitch, Laurent. "Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation." Annales scientifiques de l'École Normale Supérieure 43.4 (2010): 659-718. <http://eudml.org/doc/272208>.
@article{Lombardi2010,
abstract = {In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of $\mathbb \{C\}^n$, fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part $S$ which ensures that if such a perturbation of $S$ is formally conjugate to $S$ then it is also holomorphically conjugate to it. We study the normal form problem relatively to $S$. We give a condition on $S$ that ensures that there always exists an holomorphic transformation to a normal form. If this condition is not satisfied, we also show, that under some reasonable assumptions, each perturbation of $S$ admits a Gevrey formal normalizing transformation to a Gevrey formal normal form. Finally, we give an exponentially good approximation of the dynamic by a partial normal form.},
author = {Lombardi, Eric, Stolovitch, Laurent},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {differential equations; small divisors; resonances; normal forms},
language = {eng},
number = {4},
pages = {659-718},
publisher = {Société mathématique de France},
title = {Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation},
url = {http://eudml.org/doc/272208},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Lombardi, Eric
AU - Stolovitch, Laurent
TI - Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 4
SP - 659
EP - 718
AB - In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of $\mathbb {C}^n$, fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part $S$ which ensures that if such a perturbation of $S$ is formally conjugate to $S$ then it is also holomorphically conjugate to it. We study the normal form problem relatively to $S$. We give a condition on $S$ that ensures that there always exists an holomorphic transformation to a normal form. If this condition is not satisfied, we also show, that under some reasonable assumptions, each perturbation of $S$ admits a Gevrey formal normalizing transformation to a Gevrey formal normal form. Finally, we give an exponentially good approximation of the dynamic by a partial normal form.
LA - eng
KW - differential equations; small divisors; resonances; normal forms
UR - http://eudml.org/doc/272208
ER -
References
top- [1] V. I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, 1980. Zbl0455.34001
- [2] V. V. Basov, The generalized normal form and the formal equivalence of two-dimensional systems with zero quadratic approximation. III, Differ. Uravn. 42 (2006), 308–319. Zbl1244.34060MR2290541
- [3] G. R. Belitskii, Invariant normal forms of formal series, Funct. Anal. Appl.13 (1979), 46–47. Zbl0418.22009MR527522
- [4] G. R. Belitskii, Normal forms relative to a filtering action of a group, Trans. Moscow Math. Soc.2 (1981), 1–39. Zbl0472.58005
- [5] R. I. Bogdanov, Local orbital normal forms of vector fields on the plane, Trudy Sem. Petrovsk.5 (1979), 51–84. Zbl0665.58029MR549622
- [6] B. Braaksma & L. Stolovitch, Small divisors and large multipliers, Ann. Inst. Fourier (Grenoble) 57 (2007), 603–628. Zbl1138.37028MR2310952
- [7] A. D. Bruno, Analytical form of differential equations, Trans. Moscow Math. Soc. 25 (1971), 131–288, 26 (1972), 199–239. Zbl0272.34018
- [8] C. Camacho & P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math.115 (1982), 579–595. Zbl0503.32007MR657239
- [9] M. Canalis-Durand & R. Schäfke, Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Ann. Fac. Sci. Toulouse Math.13 (2004), 493–513. Zbl1169.34339MR2116814
- [10] H. Cartan, Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces, Hermann, 1967. Zbl0184.12701MR231303
- [11] D. Cerveau & R. Moussu, Groupes d’automorphismes de et équations différentielles , Bull. Soc. Math. France116 (1988), 459–488. Zbl0696.58011MR1005391
- [12] R. Cushman & J. A. Sanders, Nilpotent normal forms and representation theory of , in Multiparameter bifurcation theory (Arcata, Calif., 1985), Contemp. Math. 56, Amer. Math. Soc., 1986, 31–51. Zbl0604.58005MR855083
- [13] P. Ebenfelt & H. S. Shapiro, The mixed Cauchy problem for holomorphic partial differential operators, J. Anal. Math.65 (1995), 237–295. Zbl0836.35034MR1335377
- [14] J. Écalle, Sur les fonctions résurgentes, t.s I, II, III, Publ. Math. d’Orsay, 1981. Zbl0602.30029
- [15] J. Écalle, Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73–164. Zbl0940.32013MR1162558
- [16] C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet & G. Iooss, A simple global characterization for normal forms of singular vector fields, Phys. D29 (1987), 95–127. Zbl0633.58020MR923885
- [17] E. Fischer, Über die Differentiationsprozesse der Algebra, J. für Math.148 (1917), 1–78. Zbl46.1436.02JFM46.1436.02
- [18] J.-P. Françoise, Sur les formes normales de champs de vecteurs, Boll. Un. Mat. Ital. A17 (1980), 60–66. Zbl0522.58044MR562114
- [19] Y. Ilyashenko & S. Yakovenko, Lectures on analytic differential equations, Graduate Studies in Math. 86, Amer. Math. Soc., 2008. Zbl1186.34001MR2363178
- [20] G. Iooss & E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible resonance, C. R. Math. Acad. Sci. Paris339 (2004), 831–838. Zbl1066.34041MR2111718
- [21] G. Iooss & E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations212 (2005), 1–61. Zbl1072.34039MR2130546
- [22] H. Kokubu, H. Oka & D. Wang, Linear grading function and further reduction of normal forms, J. Differential Equations132 (1996), 293–318. Zbl0876.34040MR1422121
- [23] E. Lombardi & L. Stolovitch, Forme normale de perturbation de champs de vecteurs quasi-homogènes, C. R. Math. Acad. Sci. Paris347 (2009), 143–146. Zbl1161.37037MR2538101
- [24] F. Loray, Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, J. Differential Equations158 (1999), 152–173. Zbl0985.37014MR1721724
- [25] B. Malgrange, Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Séminaire Bourbaki, vol. 1981/82, exposé no 582, Astérisque 92–93 (1982), 59–73. Zbl0526.58009MR689526
- [26] B. Malgrange, Sur le théorème de Maillet, Asymptotic Anal.2 (1989), 1–4. Zbl0693.34004MR991413
- [27] J. Martinet & J.-P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. I.H.É.S. 55 (1982), 63–164. Zbl0546.58038MR672182
- [28] J. Martinet & J.-P. Ramis, Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup.16 (1983), 571–621. Zbl0534.34011MR740592
- [29] J. Murdock, Normal forms and unfoldings for local dynamical systems, Springer Monographs in Math., Springer, 2003. Zbl1014.37001MR1941477
- [30] E. Paul, Formal normal forms for the perturbations of a quasi-homogeneous Hamiltonian vector field, J. Dynam. Control Systems10 (2004), 545–575. Zbl1068.37032MR2095941
- [31] J.-P. Ramis, Théorèmes d’indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc. 48 (1984). Zbl0555.47020MR733946
- [32] H. S. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc.21 (1989), 513–537. Zbl0706.35034MR1018198
- [33] Y. Sibuya, Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs 82, Amer. Math. Soc., 1990. Zbl1145.34378MR1084379
- [34] L. Stolovitch, Sur les formes normales de systèmes nilpotents, C. R. Acad. Sci. Paris Sér. I Math.314 (1992), 355–358. Zbl0758.34026MR1153714
- [35] L. Stolovitch, Sur un théorème de Dulac, Ann. Inst. Fourier (Grenoble) 44 (1994), 1397–1433. Zbl0820.34023MR1313789
- [36] L. Stolovitch, Classification analytique de champs de vecteurs -résonnants de , Asymptotic Anal.12 (1996), 91–143. Zbl0852.58013MR1386227
- [37] L. Stolovitch, Singular complete integrability, Publ. Math. I.H.É.S. 91 (2000), 133–210. Zbl0997.32024MR1828744
- [38] L. Stolovitch, Normal form of holomorphic dynamical systems, in Hamiltonian dynamical systems and applications, NATO Sci. Peace Secur. Ser. B Phys. Biophys., Springer, 2008, 249–284. Zbl1146.37033MR2446258
- [39] L. Stolovitch, Progress in normal form theory, Nonlinearity 22 (2009), R77–R99. Zbl1175.37002MR2519674
- [40] E. Stróżyna & H. Żołądek, The analytic and formal normal form for the nilpotent singularity, J. Differential Equations179 (2002), 479–537. Zbl1005.34034MR1885678
- [41] F. Takens, Singularities of vector fields, Publ. Math. I.H.É.S. 43 (1974), 47–100. Zbl0279.58009MR339292
- [42] S. M. Voronin, Analytic classification of germs of conformal mappings , Funktsional. Anal. i Prilozhen. 15 (1981), 1–17, 96. Zbl0463.30010MR609790
- [43] M. Yoshino & T. Gramchev, Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks, Ann. Inst. Fourier (Grenoble) 58 (2008), 263–297. Zbl1137.37025MR2401222
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.