Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation

Eric Lombardi; Laurent Stolovitch

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 4, page 659-718
  • ISSN: 0012-9593

Abstract

top
In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of n , fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part S which ensures that if such a perturbation of S is formally conjugate to S then it is also holomorphically conjugate to it. We study the normal form problem relatively to S . We give a condition on S that ensures that there always exists an holomorphic transformation to a normal form. If this condition is not satisfied, we also show, that under some reasonable assumptions, each perturbation of S admits a Gevrey formal normalizing transformation to a Gevrey formal normal form. Finally, we give an exponentially good approximation of the dynamic by a partial normal form.

How to cite

top

Lombardi, Eric, and Stolovitch, Laurent. "Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation." Annales scientifiques de l'École Normale Supérieure 43.4 (2010): 659-718. <http://eudml.org/doc/272208>.

@article{Lombardi2010,
abstract = {In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of $\mathbb \{C\}^n$, fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part $S$ which ensures that if such a perturbation of $S$ is formally conjugate to $S$ then it is also holomorphically conjugate to it. We study the normal form problem relatively to $S$. We give a condition on $S$ that ensures that there always exists an holomorphic transformation to a normal form. If this condition is not satisfied, we also show, that under some reasonable assumptions, each perturbation of $S$ admits a Gevrey formal normalizing transformation to a Gevrey formal normal form. Finally, we give an exponentially good approximation of the dynamic by a partial normal form.},
author = {Lombardi, Eric, Stolovitch, Laurent},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {differential equations; small divisors; resonances; normal forms},
language = {eng},
number = {4},
pages = {659-718},
publisher = {Société mathématique de France},
title = {Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation},
url = {http://eudml.org/doc/272208},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Lombardi, Eric
AU - Stolovitch, Laurent
TI - Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 4
SP - 659
EP - 718
AB - In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of $\mathbb {C}^n$, fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part $S$ which ensures that if such a perturbation of $S$ is formally conjugate to $S$ then it is also holomorphically conjugate to it. We study the normal form problem relatively to $S$. We give a condition on $S$ that ensures that there always exists an holomorphic transformation to a normal form. If this condition is not satisfied, we also show, that under some reasonable assumptions, each perturbation of $S$ admits a Gevrey formal normalizing transformation to a Gevrey formal normal form. Finally, we give an exponentially good approximation of the dynamic by a partial normal form.
LA - eng
KW - differential equations; small divisors; resonances; normal forms
UR - http://eudml.org/doc/272208
ER -

References

top
  1. [1] V. I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, 1980. Zbl0455.34001
  2. [2] V. V. Basov, The generalized normal form and the formal equivalence of two-dimensional systems with zero quadratic approximation. III, Differ. Uravn. 42 (2006), 308–319. Zbl1244.34060MR2290541
  3. [3] G. R. Belitskii, Invariant normal forms of formal series, Funct. Anal. Appl.13 (1979), 46–47. Zbl0418.22009MR527522
  4. [4] G. R. Belitskii, Normal forms relative to a filtering action of a group, Trans. Moscow Math. Soc.2 (1981), 1–39. Zbl0472.58005
  5. [5] R. I. Bogdanov, Local orbital normal forms of vector fields on the plane, Trudy Sem. Petrovsk.5 (1979), 51–84. Zbl0665.58029MR549622
  6. [6] B. Braaksma & L. Stolovitch, Small divisors and large multipliers, Ann. Inst. Fourier (Grenoble) 57 (2007), 603–628. Zbl1138.37028MR2310952
  7. [7] A. D. Bruno, Analytical form of differential equations, Trans. Moscow Math. Soc. 25 (1971), 131–288, 26 (1972), 199–239. Zbl0272.34018
  8. [8] C. Camacho & P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math.115 (1982), 579–595. Zbl0503.32007MR657239
  9. [9] M. Canalis-Durand & R. Schäfke, Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Ann. Fac. Sci. Toulouse Math.13 (2004), 493–513. Zbl1169.34339MR2116814
  10. [10] H. Cartan, Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces, Hermann, 1967. Zbl0184.12701MR231303
  11. [11] D. Cerveau & R. Moussu, Groupes d’automorphismes de ( 𝐂 , 0 ) et équations différentielles y d y + = 0 , Bull. Soc. Math. France116 (1988), 459–488. Zbl0696.58011MR1005391
  12. [12] R. Cushman & J. A. Sanders, Nilpotent normal forms and representation theory of sl ( 2 , 𝐑 ) , in Multiparameter bifurcation theory (Arcata, Calif., 1985), Contemp. Math. 56, Amer. Math. Soc., 1986, 31–51. Zbl0604.58005MR855083
  13. [13] P. Ebenfelt & H. S. Shapiro, The mixed Cauchy problem for holomorphic partial differential operators, J. Anal. Math.65 (1995), 237–295. Zbl0836.35034MR1335377
  14. [14] J. Écalle, Sur les fonctions résurgentes, t.s I, II, III, Publ. Math. d’Orsay, 1981. Zbl0602.30029
  15. [15] J. Écalle, Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73–164. Zbl0940.32013MR1162558
  16. [16] C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet & G. Iooss, A simple global characterization for normal forms of singular vector fields, Phys. D29 (1987), 95–127. Zbl0633.58020MR923885
  17. [17] E. Fischer, Über die Differentiationsprozesse der Algebra, J. für Math.148 (1917), 1–78. Zbl46.1436.02JFM46.1436.02
  18. [18] J.-P. Françoise, Sur les formes normales de champs de vecteurs, Boll. Un. Mat. Ital. A17 (1980), 60–66. Zbl0522.58044MR562114
  19. [19] Y. Ilyashenko & S. Yakovenko, Lectures on analytic differential equations, Graduate Studies in Math. 86, Amer. Math. Soc., 2008. Zbl1186.34001MR2363178
  20. [20] G. Iooss & E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible 0 2 + i ω resonance, C. R. Math. Acad. Sci. Paris339 (2004), 831–838. Zbl1066.34041MR2111718
  21. [21] G. Iooss & E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations212 (2005), 1–61. Zbl1072.34039MR2130546
  22. [22] H. Kokubu, H. Oka & D. Wang, Linear grading function and further reduction of normal forms, J. Differential Equations132 (1996), 293–318. Zbl0876.34040MR1422121
  23. [23] E. Lombardi & L. Stolovitch, Forme normale de perturbation de champs de vecteurs quasi-homogènes, C. R. Math. Acad. Sci. Paris347 (2009), 143–146. Zbl1161.37037MR2538101
  24. [24] F. Loray, Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, J. Differential Equations158 (1999), 152–173. Zbl0985.37014MR1721724
  25. [25] B. Malgrange, Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Séminaire Bourbaki, vol. 1981/82, exposé no 582, Astérisque 92–93 (1982), 59–73. Zbl0526.58009MR689526
  26. [26] B. Malgrange, Sur le théorème de Maillet, Asymptotic Anal.2 (1989), 1–4. Zbl0693.34004MR991413
  27. [27] J. Martinet & J.-P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. I.H.É.S. 55 (1982), 63–164. Zbl0546.58038MR672182
  28. [28] J. Martinet & J.-P. Ramis, Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup.16 (1983), 571–621. Zbl0534.34011MR740592
  29. [29] J. Murdock, Normal forms and unfoldings for local dynamical systems, Springer Monographs in Math., Springer, 2003. Zbl1014.37001MR1941477
  30. [30] E. Paul, Formal normal forms for the perturbations of a quasi-homogeneous Hamiltonian vector field, J. Dynam. Control Systems10 (2004), 545–575. Zbl1068.37032MR2095941
  31. [31] J.-P. Ramis, Théorèmes d’indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc. 48 (1984). Zbl0555.47020MR733946
  32. [32] H. S. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc.21 (1989), 513–537. Zbl0706.35034MR1018198
  33. [33] Y. Sibuya, Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs 82, Amer. Math. Soc., 1990. Zbl1145.34378MR1084379
  34. [34] L. Stolovitch, Sur les formes normales de systèmes nilpotents, C. R. Acad. Sci. Paris Sér. I Math.314 (1992), 355–358. Zbl0758.34026MR1153714
  35. [35] L. Stolovitch, Sur un théorème de Dulac, Ann. Inst. Fourier (Grenoble) 44 (1994), 1397–1433. Zbl0820.34023MR1313789
  36. [36] L. Stolovitch, Classification analytique de champs de vecteurs 1 -résonnants de ( 𝐂 n , 0 ) , Asymptotic Anal.12 (1996), 91–143. Zbl0852.58013MR1386227
  37. [37] L. Stolovitch, Singular complete integrability, Publ. Math. I.H.É.S. 91 (2000), 133–210. Zbl0997.32024MR1828744
  38. [38] L. Stolovitch, Normal form of holomorphic dynamical systems, in Hamiltonian dynamical systems and applications, NATO Sci. Peace Secur. Ser. B Phys. Biophys., Springer, 2008, 249–284. Zbl1146.37033MR2446258
  39. [39] L. Stolovitch, Progress in normal form theory, Nonlinearity 22 (2009), R77–R99. Zbl1175.37002MR2519674
  40. [40] E. Stróżyna & H. Żołądek, The analytic and formal normal form for the nilpotent singularity, J. Differential Equations179 (2002), 479–537. Zbl1005.34034MR1885678
  41. [41] F. Takens, Singularities of vector fields, Publ. Math. I.H.É.S. 43 (1974), 47–100. Zbl0279.58009MR339292
  42. [42] S. M. Voronin, Analytic classification of germs of conformal mappings ( 𝐂 , 0 ) ( 𝐂 , 0 ) , Funktsional. Anal. i Prilozhen. 15 (1981), 1–17, 96. Zbl0463.30010MR609790
  43. [43] M. Yoshino & T. Gramchev, Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks, Ann. Inst. Fourier (Grenoble) 58 (2008), 263–297. Zbl1137.37025MR2401222

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.