Stochastic averaging lemmas for kinetic equations

Pierre-Louis Lions[1]; Benoît Perthame[2]; Panagiotis E. Souganidis[3]

  • [1] Université Paris-Dauphine place du Maréchal-de-Lattre-de-Tassigny 75775 Paris cedex 16 France
  • [2] Université Pierre et Marie Curie, Paris 06 CNRS UMR 7598 Laboratoire J.-L. Lions, BC187 4, place Jussieu F-75252 Paris 5 and INRIA Paris-Rocquencourt EPI Bang
  • [3] Department of Mathematics University of Chicago Chicago, IL 60637, USA

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-17
  • ISSN: 2266-0607

Abstract

top
We develop a class of averaging lemmas for stochastic kinetic equations. The velocity is multiplied by a white noise which produces a remarkable change in time scale.Compared to the deterministic case and as far as we work in L 2 , the nature of regularity on averages is not changed in this stochastic kinetic equation and stays in the range of fractional Sobolev spaces at the price of an additional expectation. However all the exponents are changed; either time decay rates are slower (when the right hand side belongs to L 2 ), or regularity is better when the right hand side contains derivatives. These changes originate from a different space/time scaling in the deterministic and stochastic cases.Our motivation comes from scalar conservation laws with stochastic fluxes where the structure under consideration arises naturally through the kinetic formulation of scalar conservation laws.

How to cite

top

Lions, Pierre-Louis, Perthame, Benoît, and Souganidis, Panagiotis E.. "Stochastic averaging lemmas for kinetic equations." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-17. <http://eudml.org/doc/251165>.

@article{Lions2011-2012,
abstract = {We develop a class of averaging lemmas for stochastic kinetic equations. The velocity is multiplied by a white noise which produces a remarkable change in time scale.Compared to the deterministic case and as far as we work in $L^2$, the nature of regularity on averages is not changed in this stochastic kinetic equation and stays in the range of fractional Sobolev spaces at the price of an additional expectation. However all the exponents are changed; either time decay rates are slower (when the right hand side belongs to $L^2$), or regularity is better when the right hand side contains derivatives. These changes originate from a different space/time scaling in the deterministic and stochastic cases.Our motivation comes from scalar conservation laws with stochastic fluxes where the structure under consideration arises naturally through the kinetic formulation of scalar conservation laws.},
affiliation = {Université Paris-Dauphine place du Maréchal-de-Lattre-de-Tassigny 75775 Paris cedex 16 France; Université Pierre et Marie Curie, Paris 06 CNRS UMR 7598 Laboratoire J.-L. Lions, BC187 4, place Jussieu F-75252 Paris 5 and INRIA Paris-Rocquencourt EPI Bang; Department of Mathematics University of Chicago Chicago, IL 60637, USA},
author = {Lions, Pierre-Louis, Perthame, Benoît, Souganidis, Panagiotis E.},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {stochastic kinetic equations; stochastic conservation laws; averaging lemmas; fractional Sobolev spaces},
language = {eng},
pages = {1-17},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stochastic averaging lemmas for kinetic equations},
url = {http://eudml.org/doc/251165},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Lions, Pierre-Louis
AU - Perthame, Benoît
AU - Souganidis, Panagiotis E.
TI - Stochastic averaging lemmas for kinetic equations
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 17
AB - We develop a class of averaging lemmas for stochastic kinetic equations. The velocity is multiplied by a white noise which produces a remarkable change in time scale.Compared to the deterministic case and as far as we work in $L^2$, the nature of regularity on averages is not changed in this stochastic kinetic equation and stays in the range of fractional Sobolev spaces at the price of an additional expectation. However all the exponents are changed; either time decay rates are slower (when the right hand side belongs to $L^2$), or regularity is better when the right hand side contains derivatives. These changes originate from a different space/time scaling in the deterministic and stochastic cases.Our motivation comes from scalar conservation laws with stochastic fluxes where the structure under consideration arises naturally through the kinetic formulation of scalar conservation laws.
LA - eng
KW - stochastic kinetic equations; stochastic conservation laws; averaging lemmas; fractional Sobolev spaces
UR - http://eudml.org/doc/251165
ER -

References

top
  1. C. Bardos, P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 2, 101–118. Zbl0593.35076MR794002
  2. F. Bouchut: Introduction to the mathematical theory of kinetic equations, in Kinetic Equations and Asymptotic Theories, (F. Bouchut, F. Golse and M. Pulvirenti), Series in Appl. Math. no. 4, Elsevier (2000). Zbl0979.82048
  3. F. Bouchut and L. Desvillettes Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proceedings of the Royal Society of Edinburgh, 129A, 19-36 (1999). Zbl0933.35159MR1669221
  4. A. Debussche and J. Vovelle, Scalar conservation laws with stochastic forcing. To appear in Communications on Pure and Applied Analysis. Zbl1200.60050MR2652180
  5. A. Debussche and J. Vovelle, Diffusion limit for a stochastic kinetic problem. J. Funct. Anal. 259 (2010), no. 4, 1014–1042. Zbl1200.60050MR2652180
  6. R.J. DiPerna, P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems. Comm. Pure Appl. Math. 42, p. 729–757, (1989) Zbl0698.35128MR1003433
  7. R.J. DiPerna, P.-L. Lions, On the Cauchy problem for the Boltzmann equation: global existence and weak stability results. Annals of Math 130 (1990) 321–366. Zbl0698.45010MR1014927
  8. R.J. DiPerna, P.-L. Lions and Y. Meyer, L p regularity of velocity averages, Ann. Inst. H. Poincaré, Analyse non-linéaire8(3–4) (1991) 271–287. Zbl0763.35014MR1127927
  9. F. Flandoli, Random Perturbation of PDEs and Fluid Dynamic Models, Lecture Notes in Mathematics 2015, Springer 2011 Zbl1221.35004MR2796837
  10. F. Flandoli, The Interaction Between Noise and Transport Mechanisms in PDEs. Milan J. Math. Vol. 79 (2011) 543–560. Zbl1231.35165MR2862027
  11. P. Gérard, Moyennisation et régularité deux-microlocale. (French) [Second-microlocal averaging and regularity] Ann. Sci. École Norm. Sup. (4) 23 (1990), no. 1, 89–121. Zbl0725.35003MR1042388
  12. R. T. Glassey, The Cauchy problem in kinetic theory, SIAM publications, Philadelphia (1996). Zbl0858.76001MR1379589
  13. F. Golse, B. Perthame and R. Sentis, Un résultat de compacité pour les équations du transport..., C. R. Acad. Sci. Paris, Série I 301 (1985) 341–344. Zbl0591.45007MR808622
  14. F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal.76 (1988) 110–125. Zbl0652.47031MR923047
  15. P.-L. Lions, B. Perthame and P. E. Souganidis, Scalar conservation laws with rough (stochastic) fluxes. Work in preparation. 
  16. P.-L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7 (1) 169–191 (1994). Zbl0820.35094MR1201239
  17. P.-L. Lions and P. E. Souganidis, Équations aux dérivées partielles stochastiques nonlinéaires et solutions de viscosité, Seminaire: Équations aux Dérivées Partielles, 1998–1999, Exp. No. I, 15, École Polytech., Palaiseau, 1999. Zbl1061.35530MR1721319
  18. P.-L. Lions and P. E. Souganidis, Viscosity solutions of fully nonlinear stochastic partial differential equations, Viscosity solutions of differential equations and related topics (Japanese) Kyoto, 2001, Sūrikaisekikenkyūsho Kōkyūroku, 1287, 2002, 58–65. MR1959710
  19. B. Perthame, Mathematical Tools for Kinetic Equations. Bull. Amer. Math. Soc. 41, 205–244 (2004). Zbl1151.82351MR2043752
  20. B. Perthame and P.E. Souganidis, A limiting case of velocity averaging lemmas Ann. Sc. E.N.S. Série 4, t. 31 (1998) 591–598. Zbl0956.45010MR1634024
  21. E. M. Stein. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1970). Zbl0207.13501MR290095
  22. C. Villani, A review of mathematical topics in collisional kinetic theory.Ê Handbook of mathematical fluid dynamics, Vol. I,Ê 71–305, North-Holland, Amsterdam, 2002. Zbl1170.82369MR1942465

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.