Far from equilibrium steady states of 1D-Schrödinger–Poisson systems with quantum wells I

V. Bonnaillie-Noël; F. Nier; Y. Patel

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 5, page 937-968
  • ISSN: 0294-1449

How to cite

top

Bonnaillie-Noël, V., Nier, F., and Patel, Y.. "Far from equilibrium steady states of 1D-Schrödinger–Poisson systems with quantum wells I." Annales de l'I.H.P. Analyse non linéaire 25.5 (2008): 937-968. <http://eudml.org/doc/78820>.

@article{Bonnaillie2008,
author = {Bonnaillie-Noël, V., Nier, F., Patel, Y.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Schrödinger-Poisson system; asymptotic analysis; multiscale problems},
language = {eng},
number = {5},
pages = {937-968},
publisher = {Elsevier},
title = {Far from equilibrium steady states of 1D-Schrödinger–Poisson systems with quantum wells I},
url = {http://eudml.org/doc/78820},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Bonnaillie-Noël, V.
AU - Nier, F.
AU - Patel, Y.
TI - Far from equilibrium steady states of 1D-Schrödinger–Poisson systems with quantum wells I
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 5
SP - 937
EP - 968
LA - eng
KW - Schrödinger-Poisson system; asymptotic analysis; multiscale problems
UR - http://eudml.org/doc/78820
ER -

References

top
  1. [1] Balslev E., Combes J.M., Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions, Commun Math. Phys.22 (1971) 280-294. Zbl0219.47005MR345552
  2. [2] Baro M., Kaiser H.-Chr., Neidhardt H., Rehberg J., A quantum transmitting Schrödinger–Poisson system, Rev. Math. Phys.16 (3) (2004) 281-330. Zbl1134.82336MR2063049
  3. [3] Baro M., Kaiser H.-Chr., Neidhardt H., Rehberg J., Dissipative Schrödinger–Poisson systems, J. Math. Phys.45 (1) (2004) 21-43. Zbl1070.82019MR2026356
  4. [4] Ben Abdallah N., Degond P., Markowich P.A., On a one-dimensional Schrödinger–Poisson scattering model, Z. Angew. Math. Phys.48 (1) (1997) 135-155. Zbl0885.34067MR1439739
  5. [5] Bonnaillie-Noël V., Nier F., Patel M., Computing the steady states for an asymptotic model of quantum transport in resonant heterostructures, J. Comp. Phys.219 (2006) 644-670. Zbl1189.82129MR2274952
  6. [6] V. Bonnaillie-Noël, F. Nier, M. Patel, Far from equilibrium steady states of 1D-Schrödinger–Poisson systems with quantum wells II, Prépublications IRMAR, 2007. Zbl1157.82046
  7. [7] Büttiker M., Imry Y., Landauer R., Pinhas S., Generalized many-channel conductance formula with application to small rings, Phys. Rev. B31 (1985) 6207-6215. 
  8. [8] Chevoir F., Vinter B., Scattering assisted tunneling in double barriers diode: scattering rates and valley current, Phys. Rev. B47 (1993) 7260-7274. 
  9. [9] Davies E.B., Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. Zbl0893.47004MR1349825
  10. [10] Degond P., Mehats F., Ringhofer C., Quantum hydrodynamic models derived from the entropy principle, Contemp. Math.371 (2005) 107-131. Zbl1080.35152MR2143862
  11. [11] Derezinski J., Gérard C., Asymptotic Completeness of Classical and Quantum N-Particles Systems, Texts and Monographs in Physics, Springer-Verlag, 1997. 
  12. [12] Dimassi M., Sjöstrand J., Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, 1999. Zbl0926.35002MR1735654
  13. [13] Gérard C., Martinez A., Semiclassical asymptotics for the spectral function of long-range Schrödinger operators, J. Funct. Anal.84 (1) (1989) 226-254. Zbl0692.35069MR999499
  14. [14] Helffer B., Semi-Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, vol. 1336, Springer-Verlag, 1988. Zbl0647.35002MR960278
  15. [15] Helffer B., Sjöstrand J., Résonances en limite semi-classique, Mém. Soc. Math. France24–25 (1986). Zbl0631.35075
  16. [16] Helffer B., Sjöstrand J., Multiple wells in the semi-classical limit I, Comm. Partial Differential Equations9 (4) (1984) 337-408. Zbl0546.35053MR740094
  17. [17] Helffer B., Sjöstrand J., Puits Multiples en limite semi-classique II. Interaction moléculaire. Symétries. Perturbation, Ann. Inst. H. Poincaré Phys. Théor.42 (2) (1985) 127-212. Zbl0595.35031MR798695
  18. [18] Helffer B., Sjöstrand J., Analyse semiclassique pour l'équation de Harper, Mém. Soc. Math. France34 (1988). Zbl0714.34130
  19. [19] Hislop P.D., Sigal I.M., Introduction to Spectral Theory with Applications to Schrödinger Operators, Applied Mathematical Sciences, vol. 113, Springer-Verlag, New York, 1996. Zbl0855.47002MR1361167
  20. [20] Jakšić V., Pillet C.-A., Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs, Commun. Math. Phys.226 (1) (2002) 131-162. Zbl0990.82017MR1889995
  21. [21] Jona-Lasinio G., Presilla C., Sjöstrand J., On Schrödinger equations with concentrated nonlinearities, Ann. Phys.240 (1) (1995) 1-21. Zbl0820.34050MR1329589
  22. [22] Kastrup J., Klann R., Grahn H., Ploog K., Bonilla L., Galàn J., Kindelan M., Moscoso M., Merlin R., Self-oscillations of domains in doped GaAs–Al–As superlatices, Phys. Rev. B52 19 (1995) 13761-13764. 
  23. [23] Landauer R., Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Develop.1 (1957) 223-231. MR90369
  24. [24] Nier F., A variational formulation of Schrödinger–Poisson systems in dimension d 3 , Comm. Partial Differential Equations18 (7–8) (1993) 1125-1147. Zbl0785.35086MR1233187
  25. [25] Nier F., Schrödinger–Poisson systems in dimension d 3 : the whole-space case, Proc. Roy. Soc. Edinburgh Sect. A123 (6) (1993) 1179-1201. Zbl0807.35119MR1263914
  26. [26] Nier F., The dynamics of some quantum open systems with short-range nonlinearities, Nonlinearity11 (4) (1998) 1127-1172. Zbl0909.34052MR1632618
  27. [27] Nier F., Patel M., Nonlinear asymptotics for quantum out-of-equilibrium 1D systems: reduced models and algorithms, in: Blanchard, Dell'Antonio (Eds.), Multiscale Methods in Quantum Mechanics: Theory and Experiment, Birkhäuser, 2004, pp. 99-111. Zbl1322.82003MR2089718
  28. [28] M. Patel, Développement de modèles macroscopiques pour des systèmes quantiques non-linéaires hors-équilibre, Ph.D. Thesis, Université de Rennes 1, 2005. 
  29. [29] Presilla C., Sjöstrand J., Transport properties in resonant tunneling heterostructures, J. Math. Phys.37 (10) (1996) 4816-4844. Zbl0868.35112MR1411610
  30. [30] Simon B., Trace Ideals and Their Applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, 1979. Zbl0423.47001MR541149
  31. [31] J. Sjöstrand, M. Zworski, Elementary linear algebra for advanced spectral problems, http://math.berkeley.edu/~zworsky/. Zbl1140.15009
  32. [32] Yafaev D., Mathematical Scattering Theory, General Theory, Translation of Mathematical Monographs, vol. 105, Amer. Math. Soc., 1992. Zbl0761.47001MR1180965

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.