Stability and invariance of multivalued iterated function systems
Mathematica Slovaca (2003)
- Volume: 53, Issue: 4, page 393-405
- ISSN: 0232-0525
Access Full Article
topHow to cite
topLeśniak, Krzysztof. "Stability and invariance of multivalued iterated function systems." Mathematica Slovaca 53.4 (2003): 393-405. <http://eudml.org/doc/31930>.
@article{Leśniak2003,
author = {Leśniak, Krzysztof},
journal = {Mathematica Slovaca},
keywords = {iterated function systems; attractor; Barsnley-Hutchinson's operator},
language = {eng},
number = {4},
pages = {393-405},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Stability and invariance of multivalued iterated function systems},
url = {http://eudml.org/doc/31930},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Leśniak, Krzysztof
TI - Stability and invariance of multivalued iterated function systems
JO - Mathematica Slovaca
PY - 2003
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 53
IS - 4
SP - 393
EP - 405
LA - eng
KW - iterated function systems; attractor; Barsnley-Hutchinson's operator
UR - http://eudml.org/doc/31930
ER -
References
top- ANDRES J.-FIŠER J., Metric and topological multivalued fractals, (To appear). Zbl1057.28003
- ANDRES J.-GÓRNIEWICZ L., On the Banach Contraction Principle for multi- valued mappings, In: Approximation, Optimization and Mathematical Economics (M. Lassonde, ed.), Physica-Verlag Springer, Heidelberg, 2001, pp. 1-23. MR1842872
- DE BLASI F. S.-GEORGIEV P. GR., Hukuhara's topological degree for non compact valued multifunctions, Publ. Res. Inst. Math. Sci. 39 (2003), 183-203. Zbl1048.47045MR1935246
- CASTAING C.-VALADIER M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin-New York, 1977. (1977) Zbl0346.46038MR0467310
- DEIMLING K., Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. (1985) Zbl0559.47040MR0787404
- ENGELKING R., Outline of General Topology, Noгth-Holland; PWN, Amsterdam; Warszawa, 1968. (1968) Zbl0157.53001MR0230273
- GÓRNIEWICZ L.-ROZPLOCH-NOWAKOWSKA D., On the Schauder fixed poгnt theorem, In: Topology in Nonlinear Analysis (K. Geba et al., eds.), Banach Center Publ. 35, Polish Acad. of Sci., Inst. of Math., Warszawa, 1996, pp. 207-219. (1996)
- HALE J. K., Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs 25, Amer. Math. Soc, Providence, RI, 1988. (1988) Zbl0642.58013MR0941371
- HAYASHI S., Self-similar sets as Tarski's fixed points, Publ. Res. Inst. Math. Sci. 21 (1985), 1059-1066. (1985) Zbl0618.54030MR0817158
- HU S.-PAPAGEORGЮU N. S., Handbook of Multivalued Analysis, Vol. I: Theory. Math. Appl., Kluwer Academic Publishers, Dordrecht, 1997. (1997) Zbl0887.47001MR1485775
- HUTCHINSON J. E., Fractals and Self Similarity, Indiana Univ. Math. J. 30 (1981), 713-747. (1981) Zbl0598.28011MR0625600
- JACHYMSKI J.-GAJEK L.-POKAROWSKI P., The Tarski-Kantorovitch Principle and the theory of iterated function systems, Bull. Austral. Math. Soc. 61 (2000), 247-261. Zbl0952.54029MR1748704
- KIENINGER B., Iterated Function Systems on Compact Hausdorff Spaces, Ph.D. Thesis, Institut für Mathematik der Mathematisch-Naturwissenschaftliche Fakultät der Universität Augsburg, 2002. Zbl1019.54020
- KURATOWSKI K., Introduction to the Theory of Sets and Topology, Biblioteka Matematyczna, PWN, Warszawa, 1977. (Polish) (1977) MR0643830
- LASOTA A.-MYJAK J., Attractors of multifunctions, Bull. Polish Acad. Sci. Math. 48 (2000), 319-334. Zbl0962.28004MR1779014
- LEŚNIAK K., Extremal sets as fractals, Nonlinear Anal. Forum 7 (2002), 199-208. Zbl1161.54301MR1959879
- CONTI G.-OBUKHOVSKII V.-ZECCA P., On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space, In: Topology in Nonlinear Analysis. Banach Center Publ. 35, Polish Acad. Sci., Warszaw, 1996, pp. 159-169. (1996) Zbl0845.34027MR1448435
- LEŚNIAK K., Towards computing Lifshits constant for hyperspaces, Sem. Fixed Point Theory Cluj-Napoca (To appear). Zbl1054.54029MR2031385
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.