Stability and invariance of multivalued iterated function systems

Krzysztof Leśniak

Mathematica Slovaca (2003)

  • Volume: 53, Issue: 4, page 393-405
  • ISSN: 0232-0525

How to cite

top

Leśniak, Krzysztof. "Stability and invariance of multivalued iterated function systems." Mathematica Slovaca 53.4 (2003): 393-405. <http://eudml.org/doc/31930>.

@article{Leśniak2003,
author = {Leśniak, Krzysztof},
journal = {Mathematica Slovaca},
keywords = {iterated function systems; attractor; Barsnley-Hutchinson's operator},
language = {eng},
number = {4},
pages = {393-405},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Stability and invariance of multivalued iterated function systems},
url = {http://eudml.org/doc/31930},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Leśniak, Krzysztof
TI - Stability and invariance of multivalued iterated function systems
JO - Mathematica Slovaca
PY - 2003
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 53
IS - 4
SP - 393
EP - 405
LA - eng
KW - iterated function systems; attractor; Barsnley-Hutchinson's operator
UR - http://eudml.org/doc/31930
ER -

References

top
  1. ANDRES J.-FIŠER J., Metric and topological multivalued fractals, (To appear). Zbl1057.28003
  2. ANDRES J.-GÓRNIEWICZ L., On the Banach Contraction Principle for multi- valued mappings, In: Approximation, Optimization and Mathematical Economics (M. Lassonde, ed.), Physica-Verlag Springer, Heidelberg, 2001, pp. 1-23. MR1842872
  3. DE BLASI F. S.-GEORGIEV P. GR., Hukuhara's topological degree for non compact valued multifunctions, Publ. Res. Inst. Math. Sci. 39 (2003), 183-203. Zbl1048.47045MR1935246
  4. CASTAING C.-VALADIER M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin-New York, 1977. (1977) Zbl0346.46038MR0467310
  5. DEIMLING K., Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. (1985) Zbl0559.47040MR0787404
  6. ENGELKING R., Outline of General Topology, Noгth-Holland; PWN, Amsterdam; Warszawa, 1968. (1968) Zbl0157.53001MR0230273
  7. GÓRNIEWICZ L.-ROZPLOCH-NOWAKOWSKA D., On the Schauder fixed poгnt theorem, In: Topology in Nonlinear Analysis (K. Geba et al., eds.), Banach Center Publ. 35, Polish Acad. of Sci., Inst. of Math., Warszawa, 1996, pp. 207-219. (1996) 
  8. HALE J. K., Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs 25, Amer. Math. Soc, Providence, RI, 1988. (1988) Zbl0642.58013MR0941371
  9. HAYASHI S., Self-similar sets as Tarski's fixed points, Publ. Res. Inst. Math. Sci. 21 (1985), 1059-1066. (1985) Zbl0618.54030MR0817158
  10. HU S.-PAPAGEORGЮU N. S., Handbook of Multivalued Analysis, Vol. I: Theory. Math. Appl., Kluwer Academic Publishers, Dordrecht, 1997. (1997) Zbl0887.47001MR1485775
  11. HUTCHINSON J. E., Fractals and Self Similarity, Indiana Univ. Math. J. 30 (1981), 713-747. (1981) Zbl0598.28011MR0625600
  12. JACHYMSKI J.-GAJEK L.-POKAROWSKI P., The Tarski-Kantorovitch Principle and the theory of iterated function systems, Bull. Austral. Math. Soc. 61 (2000), 247-261. Zbl0952.54029MR1748704
  13. KIENINGER B., Iterated Function Systems on Compact Hausdorff Spaces, Ph.D. Thesis, Institut für Mathematik der Mathematisch-Naturwissenschaftliche Fakultät der Universität Augsburg, 2002. Zbl1019.54020
  14. KURATOWSKI K., Introduction to the Theory of Sets and Topology, Biblioteka Matematyczna, PWN, Warszawa, 1977. (Polish) (1977) MR0643830
  15. LASOTA A.-MYJAK J., Attractors of multifunctions, Bull. Polish Acad. Sci. Math. 48 (2000), 319-334. Zbl0962.28004MR1779014
  16. LEŚNIAK K., Extremal sets as fractals, Nonlinear Anal. Forum 7 (2002), 199-208. Zbl1161.54301MR1959879
  17. CONTI G.-OBUKHOVSKII V.-ZECCA P., On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space, In: Topology in Nonlinear Analysis. Banach Center Publ. 35, Polish Acad. Sci., Warszaw, 1996, pp. 159-169. (1996) Zbl0845.34027MR1448435
  18. LEŚNIAK K., Towards computing Lifshits constant for hyperspaces, Sem. Fixed Point Theory Cluj-Napoca (To appear). Zbl1054.54029MR2031385

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.