On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space

Giuseppe Conti; Valeri Obukhovskiĭ; Pietro Zecca

Banach Center Publications (1996)

  • Volume: 35, Issue: 1, page 159-169
  • ISSN: 0137-6934

Abstract

top
In this paper we show that the set of all mild solutions of the Cauchy problem for a functional-differential inclusion in a separable Banach space E of the form x’(t) ∈ A(t)x(t) + F(t,xt) is an R δ -set. Here A(t) is a family of linear operators and F is a Carathéodory type multifunction. We use the existence result proved by V. V. Obukhovskiĭ [22] and extend theorems on the structure of solutions sets obtained by N. S. Papageorgiou [23] and Ya. I. Umanskiĭ [32].

How to cite

top

Conti, Giuseppe, Obukhovskiĭ, Valeri, and Zecca, Pietro. "On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space." Banach Center Publications 35.1 (1996): 159-169. <http://eudml.org/doc/251335>.

@article{Conti1996,
abstract = {In this paper we show that the set of all mild solutions of the Cauchy problem for a functional-differential inclusion in a separable Banach space E of the form x’(t) ∈ A(t)x(t) + F(t,xt) is an $R_δ$-set. Here A(t) is a family of linear operators and F is a Carathéodory type multifunction. We use the existence result proved by V. V. Obukhovskiĭ [22] and extend theorems on the structure of solutions sets obtained by N. S. Papageorgiou [23] and Ya. I. Umanskiĭ [32].},
author = {Conti, Giuseppe, Obukhovskiĭ, Valeri, Zecca, Pietro},
journal = {Banach Center Publications},
keywords = {mild solutions; Cauchy problem; functional-differential inclusion; Banach space; -set},
language = {eng},
number = {1},
pages = {159-169},
title = {On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space},
url = {http://eudml.org/doc/251335},
volume = {35},
year = {1996},
}

TY - JOUR
AU - Conti, Giuseppe
AU - Obukhovskiĭ, Valeri
AU - Zecca, Pietro
TI - On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space
JO - Banach Center Publications
PY - 1996
VL - 35
IS - 1
SP - 159
EP - 169
AB - In this paper we show that the set of all mild solutions of the Cauchy problem for a functional-differential inclusion in a separable Banach space E of the form x’(t) ∈ A(t)x(t) + F(t,xt) is an $R_δ$-set. Here A(t) is a family of linear operators and F is a Carathéodory type multifunction. We use the existence result proved by V. V. Obukhovskiĭ [22] and extend theorems on the structure of solutions sets obtained by N. S. Papageorgiou [23] and Ya. I. Umanskiĭ [32].
LA - eng
KW - mild solutions; Cauchy problem; functional-differential inclusion; Banach space; -set
UR - http://eudml.org/doc/251335
ER -

References

top
  1. [1] R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina and B. N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, Birkhäuser Verlag, Basel-Boston-Berlin, 1992. 
  2. [2] G. Anichini, G. Conti and P. Zecca, Using solution sets for solving boundary value problems for ordinary differential equations, Nonlinear Anal., Theory, Meth. and Appl. 17 No. 5 (1991), 465-472. Zbl0765.34016
  3. [3] G. Anichini and P. Zecca, Multivalued differential equations in Banach spaces, an application to control theory, J. Optim. Theory and Appl. 21 No. 4 (1977), 477-486. Zbl0336.93020
  4. [4] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis and V. V. Obukhovskiĭ, Introduction to the Theory of Multivalued Maps, Voronezh Univ. Press, Voronezh, 1986 (in Russian). 
  5. [5] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes in Math. 580, Springer, Berlin, 1977. 
  6. [6] S. N. Chow and J. D. Schuur, Fundamental theory of contingent differential equations in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 133-144. Zbl0282.34042
  7. [7] L. J. Davy, Properties of the solution set of a generalized differential equation, Bull. Australian Math. Soc. 6 (1972), 379-398. Zbl0239.49022
  8. [8] F. De Blasi, Existence and stability of solutions for autonomous multivalued differential equations in Banach spaces, Rend. Acad. Naz. Lincei, Serie VII, 60 (1976), 767-774. Zbl0371.34039
  9. [9] F. De Blasi and J. Myjak, On the solution sets for differential inclusions, Bull. Pol. Acad. Sci. 33 (1985), 17-23. Zbl0571.34008
  10. [10] J. Diestel, Remarks on weak compactness in L 1 ( μ 1 , X ) , Glasgow Math. J. 18, No. 1 (1977), 87-91. Zbl0342.46020
  11. [11] G. Dragoni, J. Macki, P. Nistri and P. Zecca, Solution sets of differential equations in abstract spaces, Pitman Res. Notes in Math., Longman, to appear. Zbl0847.34004
  12. [12] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. Zbl0322.90046
  13. [13] C. Himmelberg and F. Van Vleck, A note on the solution sets for differential inclusions, Rocky Mountain J. Math. 12 (1982), 621-625. Zbl0531.34007
  14. [14] D. M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math. 64 (1969), 91-97. Zbl0174.25804
  15. [15] M. I. Kamenskiĭ, P. Nistri, V. V. Obukhovskiĭ and P. Zecca, Optimal feedback control for a semilinear evolution equation, J. Optim. Theory and Appl. 82 No. 3 (1994), 503-517. Zbl0817.49002
  16. [16] M. Kisiliewicz, Multivalued differential equations in separable Banach spaces, J. Optim. Th. Appl. 37 (1982), 231-249. 
  17. [17] S. G. Krein, Linear Differential Equations in Banach Spaces, Amer. Math. Soc., Providence, 1971. 
  18. [18] J. M. Lasry and R. Robert, Acyclicité de l'ensemble des solutions de certaines équations fonctionnelles, C. R. Acad. Sci. Paris 282 (1976), 1283-1286. Zbl0347.47034
  19. [19] R. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976. 
  20. [20] A. M. Muhsinov, On differential inclusions in Banach spaces, Soviet Math. Dokl. 15 (1974), 1122-1125. Zbl0313.34069
  21. [21] P. Nistri, V. V. Obukhovskiĭ and P. Zecca, On the solvability of systems of inclusions involving noncompact operators, Trans. Amer. Math. Soc. 342, No. 2 (1994), 543-562. Zbl0793.47050
  22. [22] V. V. Obukhovskiĭ, Semilinear functional differential inclusions in a Banach space and controlled parabolic systems, Soviet J. Automat. Inform. Sci. 24, No. 3 (1991), 71-79 (1992). 
  23. [23] N. S. Papageorgiou, On multivalued evolution equations and differential inclusions in Banach spaces, Comment. Math. Univ. Sancti Pauli 36, No. 1 (1987), 21-39. Zbl0641.47052
  24. [24] N. S. Papageorgiou, On the solution set of differential inclusions in Banach space, Appl. Anal. 25 (1987), 319-329. Zbl0623.34062
  25. [25] N. H. Paovel and J. Vrabie, On the solution set of differential inclusions with state constraints, Appl. Anal. 31 (1989), 279-289. 
  26. [26] R. M. Sentis, Convergence de solutions d'équations différentielles multivoques, C.R. Acad. Sci. Paris, Série A, 278 (1974), 1623-1626. Zbl0306.34006
  27. [27] A. A. Tolstonogov, On differential inclusions in Banach spaces and continuous selectors, Dokl. Akad. Nauk SSSR 244 (1979), 1088-1092. 
  28. [28] A. A. Tolstonogov, On properties of solutions of differential inclusions in Banach spaces, Dokl. Akad. Nauk SSSR 248 (1979), 42-46. 
  29. [29] A. A. Tolstonogov, On the structure of the solution set for differential inclusions in a Banach space, Math. Sbornik 46 (1983), 1-15. Zbl0564.34065
  30. [30] A. A. Tolstonogov, Differential Inclusions in a Banach Space, Nauka, Novosibirsk, 1986 (in Russian). Zbl0689.34014
  31. [31] A. A. Tolstonogov and Ya. I. Umanskiĭ, On solutions of evolution inclusions II, Sibirsk. Mat. Zh. 33, No. 4 (1992), 163-174 (in Russian). 
  32. [32] Ya. I. Umanskiĭ, On a property of solutions set of differential inclusions in a Banach space, Differ. Uravneniya 28, No. 8 (1992), 1346-1351 (in Russian). Zbl0799.34019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.