On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space

Giuseppe Conti; Valeri Obukhovskiĭ; Pietro Zecca

Banach Center Publications (1996)

  • Volume: 35, Issue: 1, page 159-169
  • ISSN: 0137-6934

Abstract

top
In this paper we show that the set of all mild solutions of the Cauchy problem for a functional-differential inclusion in a separable Banach space E of the form x’(t) ∈ A(t)x(t) + F(t,xt) is an R δ -set. Here A(t) is a family of linear operators and F is a Carathéodory type multifunction. We use the existence result proved by V. V. Obukhovskiĭ [22] and extend theorems on the structure of solutions sets obtained by N. S. Papageorgiou [23] and Ya. I. Umanskiĭ [32].

How to cite

top

Conti, Giuseppe, Obukhovskiĭ, Valeri, and Zecca, Pietro. "On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space." Banach Center Publications 35.1 (1996): 159-169. <http://eudml.org/doc/251335>.

@article{Conti1996,
abstract = {In this paper we show that the set of all mild solutions of the Cauchy problem for a functional-differential inclusion in a separable Banach space E of the form x’(t) ∈ A(t)x(t) + F(t,xt) is an $R_δ$-set. Here A(t) is a family of linear operators and F is a Carathéodory type multifunction. We use the existence result proved by V. V. Obukhovskiĭ [22] and extend theorems on the structure of solutions sets obtained by N. S. Papageorgiou [23] and Ya. I. Umanskiĭ [32].},
author = {Conti, Giuseppe, Obukhovskiĭ, Valeri, Zecca, Pietro},
journal = {Banach Center Publications},
keywords = {mild solutions; Cauchy problem; functional-differential inclusion; Banach space; -set},
language = {eng},
number = {1},
pages = {159-169},
title = {On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space},
url = {http://eudml.org/doc/251335},
volume = {35},
year = {1996},
}

TY - JOUR
AU - Conti, Giuseppe
AU - Obukhovskiĭ, Valeri
AU - Zecca, Pietro
TI - On the topological structure of the solution set for a semilinear ffunctional-differential inclusion in a Banach space
JO - Banach Center Publications
PY - 1996
VL - 35
IS - 1
SP - 159
EP - 169
AB - In this paper we show that the set of all mild solutions of the Cauchy problem for a functional-differential inclusion in a separable Banach space E of the form x’(t) ∈ A(t)x(t) + F(t,xt) is an $R_δ$-set. Here A(t) is a family of linear operators and F is a Carathéodory type multifunction. We use the existence result proved by V. V. Obukhovskiĭ [22] and extend theorems on the structure of solutions sets obtained by N. S. Papageorgiou [23] and Ya. I. Umanskiĭ [32].
LA - eng
KW - mild solutions; Cauchy problem; functional-differential inclusion; Banach space; -set
UR - http://eudml.org/doc/251335
ER -

References

top
  1. [1] R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina and B. N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, Birkhäuser Verlag, Basel-Boston-Berlin, 1992. 
  2. [2] G. Anichini, G. Conti and P. Zecca, Using solution sets for solving boundary value problems for ordinary differential equations, Nonlinear Anal., Theory, Meth. and Appl. 17 No. 5 (1991), 465-472. Zbl0765.34016
  3. [3] G. Anichini and P. Zecca, Multivalued differential equations in Banach spaces, an application to control theory, J. Optim. Theory and Appl. 21 No. 4 (1977), 477-486. Zbl0336.93020
  4. [4] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis and V. V. Obukhovskiĭ, Introduction to the Theory of Multivalued Maps, Voronezh Univ. Press, Voronezh, 1986 (in Russian). 
  5. [5] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes in Math. 580, Springer, Berlin, 1977. 
  6. [6] S. N. Chow and J. D. Schuur, Fundamental theory of contingent differential equations in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 133-144. Zbl0282.34042
  7. [7] L. J. Davy, Properties of the solution set of a generalized differential equation, Bull. Australian Math. Soc. 6 (1972), 379-398. Zbl0239.49022
  8. [8] F. De Blasi, Existence and stability of solutions for autonomous multivalued differential equations in Banach spaces, Rend. Acad. Naz. Lincei, Serie VII, 60 (1976), 767-774. Zbl0371.34039
  9. [9] F. De Blasi and J. Myjak, On the solution sets for differential inclusions, Bull. Pol. Acad. Sci. 33 (1985), 17-23. Zbl0571.34008
  10. [10] J. Diestel, Remarks on weak compactness in L 1 ( μ 1 , X ) , Glasgow Math. J. 18, No. 1 (1977), 87-91. Zbl0342.46020
  11. [11] G. Dragoni, J. Macki, P. Nistri and P. Zecca, Solution sets of differential equations in abstract spaces, Pitman Res. Notes in Math., Longman, to appear. Zbl0847.34004
  12. [12] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. Zbl0322.90046
  13. [13] C. Himmelberg and F. Van Vleck, A note on the solution sets for differential inclusions, Rocky Mountain J. Math. 12 (1982), 621-625. Zbl0531.34007
  14. [14] D. M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math. 64 (1969), 91-97. Zbl0174.25804
  15. [15] M. I. Kamenskiĭ, P. Nistri, V. V. Obukhovskiĭ and P. Zecca, Optimal feedback control for a semilinear evolution equation, J. Optim. Theory and Appl. 82 No. 3 (1994), 503-517. Zbl0817.49002
  16. [16] M. Kisiliewicz, Multivalued differential equations in separable Banach spaces, J. Optim. Th. Appl. 37 (1982), 231-249. 
  17. [17] S. G. Krein, Linear Differential Equations in Banach Spaces, Amer. Math. Soc., Providence, 1971. 
  18. [18] J. M. Lasry and R. Robert, Acyclicité de l'ensemble des solutions de certaines équations fonctionnelles, C. R. Acad. Sci. Paris 282 (1976), 1283-1286. Zbl0347.47034
  19. [19] R. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976. 
  20. [20] A. M. Muhsinov, On differential inclusions in Banach spaces, Soviet Math. Dokl. 15 (1974), 1122-1125. Zbl0313.34069
  21. [21] P. Nistri, V. V. Obukhovskiĭ and P. Zecca, On the solvability of systems of inclusions involving noncompact operators, Trans. Amer. Math. Soc. 342, No. 2 (1994), 543-562. Zbl0793.47050
  22. [22] V. V. Obukhovskiĭ, Semilinear functional differential inclusions in a Banach space and controlled parabolic systems, Soviet J. Automat. Inform. Sci. 24, No. 3 (1991), 71-79 (1992). 
  23. [23] N. S. Papageorgiou, On multivalued evolution equations and differential inclusions in Banach spaces, Comment. Math. Univ. Sancti Pauli 36, No. 1 (1987), 21-39. Zbl0641.47052
  24. [24] N. S. Papageorgiou, On the solution set of differential inclusions in Banach space, Appl. Anal. 25 (1987), 319-329. Zbl0623.34062
  25. [25] N. H. Paovel and J. Vrabie, On the solution set of differential inclusions with state constraints, Appl. Anal. 31 (1989), 279-289. 
  26. [26] R. M. Sentis, Convergence de solutions d'équations différentielles multivoques, C.R. Acad. Sci. Paris, Série A, 278 (1974), 1623-1626. Zbl0306.34006
  27. [27] A. A. Tolstonogov, On differential inclusions in Banach spaces and continuous selectors, Dokl. Akad. Nauk SSSR 244 (1979), 1088-1092. 
  28. [28] A. A. Tolstonogov, On properties of solutions of differential inclusions in Banach spaces, Dokl. Akad. Nauk SSSR 248 (1979), 42-46. 
  29. [29] A. A. Tolstonogov, On the structure of the solution set for differential inclusions in a Banach space, Math. Sbornik 46 (1983), 1-15. Zbl0564.34065
  30. [30] A. A. Tolstonogov, Differential Inclusions in a Banach Space, Nauka, Novosibirsk, 1986 (in Russian). Zbl0689.34014
  31. [31] A. A. Tolstonogov and Ya. I. Umanskiĭ, On solutions of evolution inclusions II, Sibirsk. Mat. Zh. 33, No. 4 (1992), 163-174 (in Russian). 
  32. [32] Ya. I. Umanskiĭ, On a property of solutions set of differential inclusions in a Banach space, Differ. Uravneniya 28, No. 8 (1992), 1346-1351 (in Russian). Zbl0799.34019

NotesEmbed ?

top

You must be logged in to post comments.