State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra
Juri Belikov; Ülle Kotta; Maris Tõnso
Kybernetika (2012)
- Volume: 48, Issue: 6, page 1100-1113
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBelikov, Juri, Kotta, Ülle, and Tõnso, Maris. "State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra." Kybernetika 48.6 (2012): 1100-1113. <http://eudml.org/doc/251428>.
@article{Belikov2012,
abstract = {In this paper the tools of pseudo-linear algebra are applied to the realization problem, allowing to unify the study of the continuous- and discrete-time nonlinear control systems under a single algebraic framework. The realization of nonlinear input-output equation, defined in terms of the pseudo-linear operator, in the classical state-space form is addressed by the polynomial approach in which the system is described by two polynomials from the non-commutative ring of skew polynomials. This allows to simplify the existing step-by-step algorithm-based solution. The paper presents explicit formulas to compute the differentials of the state coordinates directly from the polynomial description of the nonlinear system. The method is straight-forward and better suited for implementation in different computer algebra packages such as Mathematica or Maple.},
author = {Belikov, Juri, Kotta, Ülle, Tõnso, Maris},
journal = {Kybernetika},
keywords = {nonlinear control systems; input-output models; realization; pseudo-linear algebra; nonlinear control systems; input-output models; realization; pseudo-linear algebra; ring of skew polynomials; single algebraic framework},
language = {eng},
number = {6},
pages = {1100-1113},
publisher = {Institute of Information Theory and Automation AS CR},
title = {State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra},
url = {http://eudml.org/doc/251428},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Belikov, Juri
AU - Kotta, Ülle
AU - Tõnso, Maris
TI - State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 6
SP - 1100
EP - 1113
AB - In this paper the tools of pseudo-linear algebra are applied to the realization problem, allowing to unify the study of the continuous- and discrete-time nonlinear control systems under a single algebraic framework. The realization of nonlinear input-output equation, defined in terms of the pseudo-linear operator, in the classical state-space form is addressed by the polynomial approach in which the system is described by two polynomials from the non-commutative ring of skew polynomials. This allows to simplify the existing step-by-step algorithm-based solution. The paper presents explicit formulas to compute the differentials of the state coordinates directly from the polynomial description of the nonlinear system. The method is straight-forward and better suited for implementation in different computer algebra packages such as Mathematica or Maple.
LA - eng
KW - nonlinear control systems; input-output models; realization; pseudo-linear algebra; nonlinear control systems; input-output models; realization; pseudo-linear algebra; ring of skew polynomials; single algebraic framework
UR - http://eudml.org/doc/251428
ER -
References
top- Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Wyrwas, M., Algebraic formalism of differential one-forms for nonlinear control systems on time scales., Proc. Estonian Acad. Sci. 56 (2007), 264-282. Zbl1136.93026MR2353693
- Belikov, J., Kotta, Ü., Tõnso, M., An explicit formula for computation of the state coordinates for nonlinear i/o equation., In: 18th IFAC World Congress, Milano 2011, pp. 7221-7226.
- Bronstein, M., Petkovšek, M., 10.1016/0304-3975(95)00173-5, Theoret. Comput. Sci. 157 (1996), 3-33. Zbl0868.34004MR1383396DOI10.1016/0304-3975(95)00173-5
- Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M., Analysis, Manifolds and Physics, Part I: Basics., North-Holland, Amsterdam 1982. MR0685274
- Cohn, R. M., Difference Algebra., Wiley-Interscience, New York 1965. Zbl0127.26402MR0205987
- Conte, G., Moog, C. H., Perdon, A. M., Algebraic Mehtods for Nonlinear Control Systems., Springer-Verlag, London 2007. MR2305378
- Delaleau, E., Respondek, W., Lowering the orders of derivatives of controls in generalized state space systems., J. Math. Syst., Estim. Control 5 (1995), 1-27. Zbl0852.93016MR1651823
- Grizzle, J. W., 10.1137/0331046, SIAM J. Control Optim. 31 (1991), 1026-1044. Zbl0785.93036MR1227545DOI10.1137/0331046
- Halás, M., Kotta, Ü., Li, Z., Wang, H., Yuan, C., Submersive rational difference systems and their accessibility., In: International Symposium on Symbolic and Algebraic Computation, Seoul 2009, pp. 175-182. Zbl1237.93043MR2742768
- Hauser, J., Sastry, S., Kokotović, P., 10.1109/9.119645, IEEE Trans. Automat. Control 37 (1992), 392-398. MR1148727DOI10.1109/9.119645
- Kotta, Ü., Kotta, P., Halás, M., Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra., Kybernetika 46 (2010), 831-849. Zbl1205.93027MR2778925
- Kotta, Ü., Kotta, P., Tõnso, M., Halás, M., State-space realization of nonlinear input-output equations: Unification and extension via pseudo-linear algebra., In: 9th International Conference on Control and Automation, Santiago, Chile 2011, pp. 354-359.
- Kotta, Ü., Tõnso, M., Removing or lowering the orders of input shifts in discrete-time generalized state-space systems with Mathematica., Proc. Estonian Acad. Sci. 51 (2002), 238-254. Zbl1076.93011MR1951488
- Kotta, Ü., Tõnso, M., 10.1016/j.automatica.2011.07.010, Automatica 48 (2012), 255-262. MR2889418DOI10.1016/j.automatica.2011.07.010
- McConnell, J. C., Robson, J. C., Noncommutative Noetherian Rings., John Wiley and Sons, New York 1987. Zbl0980.16019MR0934572
- Pang, Z. H., Zheng, G., Luo, C.X., Augmented state estimation and LQR control for a ball and beam system., In: 6th IEEE Conference on Industrial Electronics and Applications, Beijing 2011, pp. 1328-1332.
- Rapisarda, P., Willems, J. C., 10.1137/S0363012994268412, SIAM J. Control Optim. 35 (1997), 1053-1091. Zbl0884.93006MR1444349DOI10.1137/S0363012994268412
- Schaft, A. J. van der, 10.1007/BF01704916, Math. Systems Theory 19 (1987), 239-275. MR0871787DOI10.1007/BF01704916
- Sontag, E. D., 10.1137/0317011, SIAM J. Control Optim. 17 (1979), 139-151. Zbl0409.93013MR0516861DOI10.1137/0317011
- Tõnso, M., Kotta, Ü., Realization of continuous-time nonlinear input-output equations: Polynomial approach., Lecture Notes in Control and Inform. Sci., Springer Berlin / Heidelberg 2009, pp. 633-640.
- Tõnso, M., Rennik, H., Kotta, Ü., WebMathematica-based tools for discrete-time nonlinear control systems., Proc. Estonian Acad. Sci. 58 (2009), 224-240. Zbl1179.93079MR2604250
- Yuz, J. I., Goodwin, G. C., 10.1109/TAC.2005.856640, IEEE Trans. Automat. Control 50 (2005), 1477-1489. MR2171147DOI10.1109/TAC.2005.856640
- Zhang, J., Moog, C. H., Xia, X., Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra., Kybernetika 46 (2010), 799-830. Zbl1205.93030MR2778926
- Institute of Cybernetics at Tallinn University of Technology, The nonlinear control webpage., Website, http://nlcontrol.ioc.ee (2012).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.