Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra

Ülle Kotta; Palle Kotta; Miroslav Halás

Kybernetika (2010)

  • Volume: 46, Issue: 5, page 831-849
  • ISSN: 0023-5954

Abstract

top
The paper applies the pseudo-linear algebra to unify the results on reducibility, reduction and transfer equivalence for continuous- and discrete-time nonlinear control systems. The necessary and sufficient condition for reducibility of nonlinear input-output equation is presented in terms of the greatest common left factor of two polynomials describing the behaviour of the ‘tangent linearized system’ equation. The procedure is given to find the reduced (irreducible) system equation that is transfer equivalent to the original system equation. Besides unification, the tools of pseudo-linear algebra allow to extend the results also for systems defined in terms of difference, q -shift and q -difference operators.

How to cite

top

Kotta, Ülle, Kotta, Palle, and Halás, Miroslav. "Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra." Kybernetika 46.5 (2010): 831-849. <http://eudml.org/doc/196324>.

@article{Kotta2010,
abstract = {The paper applies the pseudo-linear algebra to unify the results on reducibility, reduction and transfer equivalence for continuous- and discrete-time nonlinear control systems. The necessary and sufficient condition for reducibility of nonlinear input-output equation is presented in terms of the greatest common left factor of two polynomials describing the behaviour of the ‘tangent linearized system’ equation. The procedure is given to find the reduced (irreducible) system equation that is transfer equivalent to the original system equation. Besides unification, the tools of pseudo-linear algebra allow to extend the results also for systems defined in terms of difference, $q$-shift and $q$-difference operators.},
author = {Kotta, Ülle, Kotta, Palle, Halás, Miroslav},
journal = {Kybernetika},
keywords = {nonlinear control systems; input-output models; reduction; pseudo-linear algebra; transfer equivalence; nonlinear control systems; input-output models; reduction; pseudo-linear algebra; transfer equivalence},
language = {eng},
number = {5},
pages = {831-849},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra},
url = {http://eudml.org/doc/196324},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Kotta, Ülle
AU - Kotta, Palle
AU - Halás, Miroslav
TI - Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 5
SP - 831
EP - 849
AB - The paper applies the pseudo-linear algebra to unify the results on reducibility, reduction and transfer equivalence for continuous- and discrete-time nonlinear control systems. The necessary and sufficient condition for reducibility of nonlinear input-output equation is presented in terms of the greatest common left factor of two polynomials describing the behaviour of the ‘tangent linearized system’ equation. The procedure is given to find the reduced (irreducible) system equation that is transfer equivalent to the original system equation. Besides unification, the tools of pseudo-linear algebra allow to extend the results also for systems defined in terms of difference, $q$-shift and $q$-difference operators.
LA - eng
KW - nonlinear control systems; input-output models; reduction; pseudo-linear algebra; transfer equivalence; nonlinear control systems; input-output models; reduction; pseudo-linear algebra; transfer equivalence
UR - http://eudml.org/doc/196324
ER -

References

top
  1. Abramov, S. A., Le, H. Q., Li, Z., 10.1007/s10958-005-0449-8, J. Math. Sci. 131 (2005), 5885–5903. (2005) MR2153691DOI10.1007/s10958-005-0449-8
  2. Aranda-Bricaire, E., Kotta, Ü., Moog, C. H., 10.1137/S0363012994267315, SIAM J. Control Optim. 34 (1996), 1999–2023. (1996) Zbl0863.93014MR1416497DOI10.1137/S0363012994267315
  3. Bartosiewicz, Z., Kotta, Ü., Pawluszewicz, E., Wyrwas, M., Differential rings associated with control systems on regular time scales, In: Proc. European Control Conference, Budapest 2009, pp. 242–247. (2009) 
  4. Bourles, H., Structural properties of discrete and continuous linear time-varying systems: a unified approach, In: Lecture Notes in Control and Inform. Sci. 311 (F. Lamnabhi-Lagarrigue et al., eds.), Springer-Verlag, London 2005, pp. 225–280. (2005) Zbl1167.93357MR2130107
  5. Bronstein, M., Petkovsek, M., 10.1016/0304-3975(95)00173-5, Theoret. Comput. Sci. 157 (1996), 3–33. (1996) Zbl0868.34004MR1383396DOI10.1016/0304-3975(95)00173-5
  6. Casagrande, D., Kotta, Ü., Wyrwas, M., Tõnso, M., Transfer equivalence and reduction of nonlinear delta differential equations on homogeneous time scale, In: Proc. American Control Conference, Seattle 2008. (2008) 
  7. Chyzak, F., Quadrat, A., Robertz, D., 10.1007/s00200-005-0188-6, Appl. Algebra Engrg. Comm. Comput. 16 (2005), 319–376. (2005) Zbl1109.93018MR2233761DOI10.1007/s00200-005-0188-6
  8. Chyzak, F., Quadrat, A., Robertz, D., OREMODULES: A symbolic package for the study of multidimensional linear systems, In: Applications of time-delay systems. Lecture Notes in Control and Inform. Sci. 352 (J. Chiasson and J.-J. Loiseau, eds.), Springer-Verlag, Berlin 2007, pp. 233–264. (2007) Zbl1248.93006MR2309473
  9. Cohn, R. M., Difference Algebra, Wiley-Interscience, New York 1965. (1965) Zbl0127.26402MR0205987
  10. Conte, G., Moog, C. H., Perdon, A. M., Algebraic Methods for Nonlinear Control Systems, Theory and Applications. Second edition. Lecture Notes in Control and Inform. Sci., Springer, London 2007. (2007) Zbl1130.93030MR2305378
  11. Delaleau, E., 10.1080/00207170701592430, Internat. J. Control 81, (2008), 3, 382–397. (2008) Zbl1152.93336MR2384346DOI10.1080/00207170701592430
  12. Fliess, M., 10.1016/0167-6911(90)90062-Y, Syst. Contr. Lett. 15 (1990), 391–396. (1990) Zbl0727.93024MR1084580DOI10.1016/0167-6911(90)90062-Y
  13. Fliess, M., Mounier, M., 10.1051/cocv:1998111, ESAIM Control, Optimization and Calculus of Variations 3, (1998), 301–314. (1998) Zbl0908.93013MR1644427DOI10.1051/cocv:1998111
  14. Halás, M., 10.1016/j.automatica.2007.09.008, Automatica 44 (2008), 1181–1190. (2008) MR2531783DOI10.1016/j.automatica.2007.09.008
  15. Halás, M., Kotta, Ü., Pseudo-linear algebra: a powerful tool in unification of the study of nonlinear control systems, In: NOLCOS 2007: 7th IFAC Symposium on Nonlinear Control Systems, Pretoria 2007, pp. 684–689. (2007) 
  16. Halás, M., Kotta, Ü., Li, Z., Yuan, H. Wang ,and C., Submersive rational difference systems and formal accessibility, In: Proc. Internat. Symposium on Symbolic and Algebraic Computation, Seoul 2009. (2009) 
  17. Johnson, K., 10.2307/1970810, Ann. of Math. 89, (1969), 92–98. (1969) Zbl0179.34302MR0238823DOI10.2307/1970810
  18. Kotta, Ü., Irreducibility conditions for nonlinear input-output difference equations, In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 3404–3408. (2000) 
  19. Kotta, Ü., Decomposition of discrete-time nonlinear control systems, Proc. Estonian Academy of Sci. Phys. Math. 54, (2005), 3, pp. 154–161. (2005) Zbl1101.93020MR2169162
  20. Kotta, Ü., Bartosiewicz, Z., Pawluszewicz, E., Wyrwas, M., 10.1016/j.sysconle.2009.04.006, Systems Control Lett. 58, (2009), 646–651. (2009) Zbl1184.93025MR2554398DOI10.1016/j.sysconle.2009.04.006
  21. Kotta, Ü., Chowdhury, F.N., Nõmm, S., 10.1016/j.automatica.2006.03.003, Automatica 42 (2006), 1211–1216. (2006) Zbl1117.93368MR2230991DOI10.1016/j.automatica.2006.03.003
  22. Kotta, Ü., Tõnso, M., Irreducibility conditions for discrete-time nonlinear multi-input multi-output systems, In: Proc. 6th IFAC Symposium NOLCOS, Stuttgart 2004. (2004) 
  23. Kotta, Ü., Zinober, A. S. I., Liu, P., 10.1016/S0005-1098(01)00144-3, Automatica 37 (2001), 1771–1778. (2001) Zbl1009.93048DOI10.1016/S0005-1098(01)00144-3
  24. McConnell, J. C., Robson, J. C., Noncommutative noetherian rings, With the cooperation of L.W. Small. John Wiley & Sons, Ltd., Chichester 1987. (1987) Zbl0644.16008MR0934572
  25. Ore, O., 10.2307/1968173, Ann. of Math. 32 (1933), 480–508. (1933) Zbl0007.15101MR1503119DOI10.2307/1968173
  26. Perdon, A.-M., Moog, C. H., Conte, G., The pole-zero structure of nonlinear control systems, In: NOLCOS 2007: 7th IFAC Symposium on Nonlinear Control Systems, Pretoria 2007, pp. 690–693. (2007) 
  27. Toth, R., Modeling and Identification of Linear Parameter-Varying Systems, PhD. thesis. Delft University of Technology 2008. (2008) 
  28. Pommaret, J. F., Quadrat, A., 10.1016/S0167-6911(99)00030-4, Systems Control Lett. 37 (1999), 247–260. (1999) Zbl0948.93016MR1751255DOI10.1016/S0167-6911(99)00030-4
  29. Xia, X., Marques, L. A., Zagalak, P., Moog, C. H., 10.1016/S0005-1098(02)00051-1, Automatica 38 (2002), 1549–1555. (2002) MR2134034DOI10.1016/S0005-1098(02)00051-1
  30. Ylinen, R., Application of polynomial systems theory to nonlinear systems, In: Proc. 16th IFAC World Congress, Prague 2005. (2005) 
  31. Zhang, C., Zheng, Y., 10.1080/00207170410001682506, Internat. J. Control 77 (2004), 491–477. (2004) Zbl1061.93021MR2052880DOI10.1080/00207170410001682506
  32. Zheng, Y., Willems, J., Zhang, C., 10.1109/9.964691, IEEE Trans. Automat. Control 46 (2001), 1782–1788. (2001) Zbl1175.93045MR1864751DOI10.1109/9.964691

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.