Poincaré’s proof of the co-called Birkhoff-Witt theorem

Tuong Ton-That; Thai-Duong Tran

Revue d'histoire des mathématiques (1999)

  • Volume: 5, Issue: 2, page 245-280
  • ISSN: 1262-022X

Abstract

top
A methodical analysis of the research related to the article, “Sur les groupes continus”, of Henri Poincaré reveals many historical misconceptions and inaccuracies regarding his contribution to Lie theory. A thorough reading of this article confirms the priority of his discovery of many important concepts, especially that of the universal enveloping algebra of a Lie algebra over the real or complex field, and the canonical map (symmetrization) of the symmetric algebra onto the universal enveloping algebra. The essential part of this article consists of a detailed discussion of his rigorous, complete, and enlightening proof of the so-called Birkhoff-Witt theorem.

How to cite

top

Ton-That, Tuong, and Tran, Thai-Duong. "Poincaré’s proof of the co-called Birkhoff-Witt theorem." Revue d'histoire des mathématiques 5.2 (1999): 245-280. <http://eudml.org/doc/252098>.

@article{Ton1999,
abstract = {A methodical analysis of the research related to the article, “Sur les groupes continus”, of Henri Poincaré reveals many historical misconceptions and inaccuracies regarding his contribution to Lie theory. A thorough reading of this article confirms the priority of his discovery of many important concepts, especially that of the universal enveloping algebra of a Lie algebra over the real or complex field, and the canonical map (symmetrization) of the symmetric algebra onto the universal enveloping algebra. The essential part of this article consists of a detailed discussion of his rigorous, complete, and enlightening proof of the so-called Birkhoff-Witt theorem.},
author = {Ton-That, Tuong, Tran, Thai-Duong},
journal = {Revue d'histoire des mathématiques},
keywords = {Henri Poincaré; Lie algebra; universal enveloping algebra; Garrett Birkhoff; Ernst Witt; symmetric algebra},
language = {eng},
number = {2},
pages = {245-280},
publisher = {Société mathématique de France},
title = {Poincaré’s proof of the co-called Birkhoff-Witt theorem},
url = {http://eudml.org/doc/252098},
volume = {5},
year = {1999},
}

TY - JOUR
AU - Ton-That, Tuong
AU - Tran, Thai-Duong
TI - Poincaré’s proof of the co-called Birkhoff-Witt theorem
JO - Revue d'histoire des mathématiques
PY - 1999
PB - Société mathématique de France
VL - 5
IS - 2
SP - 245
EP - 280
AB - A methodical analysis of the research related to the article, “Sur les groupes continus”, of Henri Poincaré reveals many historical misconceptions and inaccuracies regarding his contribution to Lie theory. A thorough reading of this article confirms the priority of his discovery of many important concepts, especially that of the universal enveloping algebra of a Lie algebra over the real or complex field, and the canonical map (symmetrization) of the symmetric algebra onto the universal enveloping algebra. The essential part of this article consists of a detailed discussion of his rigorous, complete, and enlightening proof of the so-called Birkhoff-Witt theorem.
LA - eng
KW - Henri Poincaré; Lie algebra; universal enveloping algebra; Garrett Birkhoff; Ernst Witt; symmetric algebra
UR - http://eudml.org/doc/252098
ER -

References

top
  1. [1] Encyclopaedia [1988–1994] Encyclopaedia of Mathematics, ed. by I.M.Vinogradov, Dordrecht-Boston: Kluwer Academic Publishers, 1988–1994, translated from Математическая энциклопедия, главный редактор И.М. Виноградов 495, Москва́: Советская энциклопедия, 1977. (the rubric “Birkhoff-Witt theorem” is in Tome1, p.495). 
  2. [2] Barrow-Green ( June) [1997] Poincaré and the Three-Body Problem, Providence: American Mathematical Society, 1997. Zbl0877.01022MR1415387
  3. [3] Bell ( Eric T.) [1937] Men of Mathematics, New York: Simon & Schuster, 1937. JFM63.0793.03
  4. [4] Birkhoff ( Garrett) [1937] Representability of Lie algebras and Lie groups by matrices, Annals of Mathematics, 38 (April 1937), pp. 526–532. Zbl0016.24402MR1503351JFM63.0090.01
  5. [5] Bourbaki ( Nicolas) [1960] Éléments de mathématiques, Fascicule XXVI. Groupes et algèbres de Lie, Chap. 1, Paris: Hermann, 1960. MR113788
  6. [6] Bourbaki ( Nicolas) [1969] Éléments d’histoire des mathématiques, Paris: Hermann, 1969. Zbl0129.24508MR243970
  7. [7] Bourbaki ( Nicolas) [1972] Éléments de mathématiques, Fascicule XXXVII. Groupes et algèbres de Lie, Paris: Hermann, 1972. MR573068
  8. [8] Bourbaki ( Nicolas) [1975] Elements of Mathematics. Lie Groups and Lie Algebras, Part I, Chapter I-3, Reading, MA: Addison-Wesley, 1975; Paris: Hermann, 1971–73. MR682756
  9. [9] Boyer ( Carl) [1968] A History of Mathematics, Princeton: Princeton University Press, 1968. Zbl0562.01001MR234791
  10. [10] Cartan ( Henri) & Eilenberg ( Samuel) [1956] Homological Algebra, Princeton: Princeton University Press, 1956. Zbl0075.24305MR77480
  11. [11] Chevalley ( Claude) [1955] Théorie des groupes de Lie, vol. III, Paris: Hermann, 1955. Zbl0063.00843MR68552
  12. [12] Cohn ( Paul M.) [1981] Universal Algebra, Dordrecht: Reidel, 1981. MR620952
  13. [13] Dixmier ( Jacques) [1974] Algèbres enveloppantes, Paris: Gauthier-Villars, 1974. Zbl0308.17007MR498737
  14. [14] Gittleman ( Arthur) [1975] History of Mathematics, Columbus, OH: C.E. Merrill Publishing Company, 1975. 
  15. [15] Godement ( Roger) [1982] Introduction à la théorie des groupes de Lie, 2 vols., Publications mathématiques de l’Université de Paris VII, Paris: Univ. Paris VII, 1982. Zbl0533.22001
  16. [16] Harish-Chandra [1949] On Representations of Lie Algebras, Annals of Mathematics, 50 (October 1949), pp. 900–915. Zbl0035.01901MR30945
  17. [17] Harish-Chandra [1951] On Some Applications of the Universal Enveloping Algebra of a Semisimple Lie Algebra, Transactions of the American Mathematical Society, 70–71 (1951), pp. 28–96. Zbl0042.12701MR44515
  18. [18] Hoffman ( Kenneth) & Kunze ( Ray) [1971] Linear Algebra, second ed., Englewood Cliffs, NJ: Prentice-Hall, 1971. MR276251
  19. [19] Humphreys ( James E.) [1972] Introduction to Lie Algebras and Representation Theory, New York: Springer-Verlag, 1972. Zbl0254.17004MR323842
  20. [20] Jacobson ( Nathan) [1962] Lie Algebras, New York: John Wiley & Sons, 1962. Zbl0121.27504MR143793
  21. [21] Knapp ( Anthony) [1986] Representation Theory of Semisimple Groups, Princeton: Princeton University Press, 1986. Zbl0604.22001MR855239
  22. [22] Kuroś ( Aleksandrevich Gennadievich) [1963] Lectures on General Algebras, New York: Chelsea, 1963. MR158000
  23. [23] Lang ( Serge) [1965] Algebra, Reading, MA: Addison-Wesley, 1965. Zbl0193.34701MR197234
  24. [24] Lazard ( Michel) [1952] Sur les algèbres enveloppantes universelles de certaines algèbres de Lie, Comptes rendus hebdomadaires des séances de l’Académie des sciences de Paris Sér. I (18 Feb. 1952), pp.788–792. Zbl0046.03403MR46350
  25. [25] Lazard ( Michel) [1954] Sur les algèbres enveloppantes de certaines algèbres de Lie, Publications scientifiques de l’Université d’Alger, Sér. A, 1 (1954), pp. 281–294. Zbl0066.02303MR74781
  26. [26] Lorentz ( Hendrik Antoon) [1921] Deux mémoires de Henri Poincaré sur la physique mathématique, Acta mathematica, 38 (1921), pp. 293–308. MR1555115
  27. [27] PainlevÉ ( Paul) [1921] Henri Poincaré, Acta Math., 38 (1921), pp. 309–402. 
  28. [28] PoincarÉ ( Henri) [Œuvres] Œuvres de Henri Poincaré, 11 vols., Paris: Gauthier-Villars, 1916– . Zbl0072.24103
  29. [29] PoincarÉ ( Henri) [1881] Formes cubiques ternaires et quaternaires, Journal de l’École polytechnique Paris, XXXI (1881), pp. 199–253. JFM15.0097.01
  30. [30] PoincarÉ ( Henri) [1883] Sur la reproduction des formes, C.R. Acad. sci. Paris (29 oct. 1883), pp.949–951. Zbl15.0117.01JFM15.0117.01
  31. [31] PoincarÉ ( Henri) [1899] Sur les groupes continus, C.R. Acad. sci. Paris, 128 (1899), pp. 1065–1069. Zbl30.0334.01JFM30.0334.01
  32. [32] PoincarÉ ( Henri) [1900] Sur les groupes continus, Transactions of the Cambridge Philosophical Society, 18 (1900), pp. 220–255 = Œuvres de Henri Poincaré, vol., III, Paris: Gauthier-Villars (1934), pp.173–212. JFM31.0386.01
  33. [33] PoincarÉ ( Henri) [1901] Quelques remarques sur les groupes continus, Rendiconti del Circolo matematico di Palermo, 15 (1901), pp.213–260. JFM32.0373.01
  34. [34] PoincarÉ ( Henri) [1906] Sur la dynamique de l’électron, Rend. Circ. Mat. Palermo, 21 (1906), pp.129–176. JFM37.0886.01
  35. [35] PoincarÉ ( Henri) [1908] Nouvelles remarques sur les groupes continus, Rend. Circ. Mat. Palermo, 25 (1908), pp.261–321. JFM39.0434.01
  36. [36] PoincarÉ ( Henri) [1912] Sur la théorie des quanta, Journal de physique théorique et appliquée 5e sér., 2 (1912), pp.5–34. JFM43.0972.04
  37. [37] PoincarÉ ( Henri) [In memoriam 1921] Henri Poincaré in memoriam, Acta Math., 38 (1921). Zbl48.1459.01JFM48.1459.01
  38. [38] Schmid ( Wilfried) [1982] Poincaré and Lie groups, Bulletin of the American Mathematical Society (N.S.), 6 (1982), pp. 175–186. This article is also reprinted in Felix E.Browder (ed.), The Mathematical Heritage of Henri Poincaré, Proceedings of Symposia in Pure Mathematics, Vol. 39, Providence, R.I.: American Mathematical Society, 1983, Part 1, pp.157–168. Zbl0525.01011MR640944
  39. [39] Schwartz ( Laurent) [1998 (1975)] Les tenseurs, Paris: Hermann, 1998; 1e éd. 1975. MR480597
  40. [40] Varadarajan ( V.S.) [1984 (1974)] Lie Groups, Lie Algebras and Their Representations, New York: Springer-Verlag, 1984; Englewood Cliffs, NJ: Prentice-Hall, 1974. Zbl0371.22001MR746308
  41. [41] Weyl ( Hermann) [1946] The Classical Groups, Their Invariants and Representations, second ed., Princeton: Princeton Univ. Press, 1946. Zbl0020.20601MR1488158JFM65.0058.02
  42. [42] Witt ( Ernst) [1937] Treue Darstellung Liescher Ringe, Journal für die reine und angewandte Mathematik, 177 (1937), pp. 152–160. Zbl0016.24401JFM63.0089.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.