Poincaré’s proof of the co-called Birkhoff-Witt theorem
Tuong Ton-That; Thai-Duong Tran
Revue d'histoire des mathématiques (1999)
- Volume: 5, Issue: 2, page 245-280
- ISSN: 1262-022X
Access Full Article
topAbstract
topHow to cite
topTon-That, Tuong, and Tran, Thai-Duong. "Poincaré’s proof of the co-called Birkhoff-Witt theorem." Revue d'histoire des mathématiques 5.2 (1999): 245-280. <http://eudml.org/doc/252098>.
@article{Ton1999,
abstract = {A methodical analysis of the research related to the article, “Sur les groupes continus”, of Henri Poincaré reveals many historical misconceptions and inaccuracies regarding his contribution to Lie theory. A thorough reading of this article confirms the priority of his discovery of many important concepts, especially that of the universal enveloping algebra of a Lie algebra over the real or complex field, and the canonical map (symmetrization) of the symmetric algebra onto the universal enveloping algebra. The essential part of this article consists of a detailed discussion of his rigorous, complete, and enlightening proof of the so-called Birkhoff-Witt theorem.},
author = {Ton-That, Tuong, Tran, Thai-Duong},
journal = {Revue d'histoire des mathématiques},
keywords = {Henri Poincaré; Lie algebra; universal enveloping algebra; Garrett Birkhoff; Ernst Witt; symmetric algebra},
language = {eng},
number = {2},
pages = {245-280},
publisher = {Société mathématique de France},
title = {Poincaré’s proof of the co-called Birkhoff-Witt theorem},
url = {http://eudml.org/doc/252098},
volume = {5},
year = {1999},
}
TY - JOUR
AU - Ton-That, Tuong
AU - Tran, Thai-Duong
TI - Poincaré’s proof of the co-called Birkhoff-Witt theorem
JO - Revue d'histoire des mathématiques
PY - 1999
PB - Société mathématique de France
VL - 5
IS - 2
SP - 245
EP - 280
AB - A methodical analysis of the research related to the article, “Sur les groupes continus”, of Henri Poincaré reveals many historical misconceptions and inaccuracies regarding his contribution to Lie theory. A thorough reading of this article confirms the priority of his discovery of many important concepts, especially that of the universal enveloping algebra of a Lie algebra over the real or complex field, and the canonical map (symmetrization) of the symmetric algebra onto the universal enveloping algebra. The essential part of this article consists of a detailed discussion of his rigorous, complete, and enlightening proof of the so-called Birkhoff-Witt theorem.
LA - eng
KW - Henri Poincaré; Lie algebra; universal enveloping algebra; Garrett Birkhoff; Ernst Witt; symmetric algebra
UR - http://eudml.org/doc/252098
ER -
References
top- [1] Encyclopaedia [1988–1994] Encyclopaedia of Mathematics, ed. by I.M.Vinogradov, Dordrecht-Boston: Kluwer Academic Publishers, 1988–1994, translated from Математическая энциклопедия, главный редактор И.М. Виноградов 495, Москва́: Советская энциклопедия, 1977. (the rubric “Birkhoff-Witt theorem” is in Tome1, p.495).
- [2] Barrow-Green ( June) [1997] Poincaré and the Three-Body Problem, Providence: American Mathematical Society, 1997. Zbl0877.01022MR1415387
- [3] Bell ( Eric T.) [1937] Men of Mathematics, New York: Simon & Schuster, 1937. JFM63.0793.03
- [4] Birkhoff ( Garrett) [1937] Representability of Lie algebras and Lie groups by matrices, Annals of Mathematics, 38 (April 1937), pp. 526–532. Zbl0016.24402MR1503351JFM63.0090.01
- [5] Bourbaki ( Nicolas) [1960] Éléments de mathématiques, Fascicule XXVI. Groupes et algèbres de Lie, Chap. 1, Paris: Hermann, 1960. MR113788
- [6] Bourbaki ( Nicolas) [1969] Éléments d’histoire des mathématiques, Paris: Hermann, 1969. Zbl0129.24508MR243970
- [7] Bourbaki ( Nicolas) [1972] Éléments de mathématiques, Fascicule XXXVII. Groupes et algèbres de Lie, Paris: Hermann, 1972. MR573068
- [8] Bourbaki ( Nicolas) [1975] Elements of Mathematics. Lie Groups and Lie Algebras, Part I, Chapter I-3, Reading, MA: Addison-Wesley, 1975; Paris: Hermann, 1971–73. MR682756
- [9] Boyer ( Carl) [1968] A History of Mathematics, Princeton: Princeton University Press, 1968. Zbl0562.01001MR234791
- [10] Cartan ( Henri) & Eilenberg ( Samuel) [1956] Homological Algebra, Princeton: Princeton University Press, 1956. Zbl0075.24305MR77480
- [11] Chevalley ( Claude) [1955] Théorie des groupes de Lie, vol. III, Paris: Hermann, 1955. Zbl0063.00843MR68552
- [12] Cohn ( Paul M.) [1981] Universal Algebra, Dordrecht: Reidel, 1981. MR620952
- [13] Dixmier ( Jacques) [1974] Algèbres enveloppantes, Paris: Gauthier-Villars, 1974. Zbl0308.17007MR498737
- [14] Gittleman ( Arthur) [1975] History of Mathematics, Columbus, OH: C.E. Merrill Publishing Company, 1975.
- [15] Godement ( Roger) [1982] Introduction à la théorie des groupes de Lie, 2 vols., Publications mathématiques de l’Université de Paris VII, Paris: Univ. Paris VII, 1982. Zbl0533.22001
- [16] Harish-Chandra [1949] On Representations of Lie Algebras, Annals of Mathematics, 50 (October 1949), pp. 900–915. Zbl0035.01901MR30945
- [17] Harish-Chandra [1951] On Some Applications of the Universal Enveloping Algebra of a Semisimple Lie Algebra, Transactions of the American Mathematical Society, 70–71 (1951), pp. 28–96. Zbl0042.12701MR44515
- [18] Hoffman ( Kenneth) & Kunze ( Ray) [1971] Linear Algebra, second ed., Englewood Cliffs, NJ: Prentice-Hall, 1971. MR276251
- [19] Humphreys ( James E.) [1972] Introduction to Lie Algebras and Representation Theory, New York: Springer-Verlag, 1972. Zbl0254.17004MR323842
- [20] Jacobson ( Nathan) [1962] Lie Algebras, New York: John Wiley & Sons, 1962. Zbl0121.27504MR143793
- [21] Knapp ( Anthony) [1986] Representation Theory of Semisimple Groups, Princeton: Princeton University Press, 1986. Zbl0604.22001MR855239
- [22] Kuroś ( Aleksandrevich Gennadievich) [1963] Lectures on General Algebras, New York: Chelsea, 1963. MR158000
- [23] Lang ( Serge) [1965] Algebra, Reading, MA: Addison-Wesley, 1965. Zbl0193.34701MR197234
- [24] Lazard ( Michel) [1952] Sur les algèbres enveloppantes universelles de certaines algèbres de Lie, Comptes rendus hebdomadaires des séances de l’Académie des sciences de Paris Sér. I (18 Feb. 1952), pp.788–792. Zbl0046.03403MR46350
- [25] Lazard ( Michel) [1954] Sur les algèbres enveloppantes de certaines algèbres de Lie, Publications scientifiques de l’Université d’Alger, Sér. A, 1 (1954), pp. 281–294. Zbl0066.02303MR74781
- [26] Lorentz ( Hendrik Antoon) [1921] Deux mémoires de Henri Poincaré sur la physique mathématique, Acta mathematica, 38 (1921), pp. 293–308. MR1555115
- [27] PainlevÉ ( Paul) [1921] Henri Poincaré, Acta Math., 38 (1921), pp. 309–402.
- [28] PoincarÉ ( Henri) [Œuvres] Œuvres de Henri Poincaré, 11 vols., Paris: Gauthier-Villars, 1916– . Zbl0072.24103
- [29] PoincarÉ ( Henri) [1881] Formes cubiques ternaires et quaternaires, Journal de l’École polytechnique Paris, XXXI (1881), pp. 199–253. JFM15.0097.01
- [30] PoincarÉ ( Henri) [1883] Sur la reproduction des formes, C.R. Acad. sci. Paris (29 oct. 1883), pp.949–951. Zbl15.0117.01JFM15.0117.01
- [31] PoincarÉ ( Henri) [1899] Sur les groupes continus, C.R. Acad. sci. Paris, 128 (1899), pp. 1065–1069. Zbl30.0334.01JFM30.0334.01
- [32] PoincarÉ ( Henri) [1900] Sur les groupes continus, Transactions of the Cambridge Philosophical Society, 18 (1900), pp. 220–255 = Œuvres de Henri Poincaré, vol., III, Paris: Gauthier-Villars (1934), pp.173–212. JFM31.0386.01
- [33] PoincarÉ ( Henri) [1901] Quelques remarques sur les groupes continus, Rendiconti del Circolo matematico di Palermo, 15 (1901), pp.213–260. JFM32.0373.01
- [34] PoincarÉ ( Henri) [1906] Sur la dynamique de l’électron, Rend. Circ. Mat. Palermo, 21 (1906), pp.129–176. JFM37.0886.01
- [35] PoincarÉ ( Henri) [1908] Nouvelles remarques sur les groupes continus, Rend. Circ. Mat. Palermo, 25 (1908), pp.261–321. JFM39.0434.01
- [36] PoincarÉ ( Henri) [1912] Sur la théorie des quanta, Journal de physique théorique et appliquée 5e sér., 2 (1912), pp.5–34. JFM43.0972.04
- [37] PoincarÉ ( Henri) [In memoriam 1921] Henri Poincaré in memoriam, Acta Math., 38 (1921). Zbl48.1459.01JFM48.1459.01
- [38] Schmid ( Wilfried) [1982] Poincaré and Lie groups, Bulletin of the American Mathematical Society (N.S.), 6 (1982), pp. 175–186. This article is also reprinted in Felix E.Browder (ed.), The Mathematical Heritage of Henri Poincaré, Proceedings of Symposia in Pure Mathematics, Vol. 39, Providence, R.I.: American Mathematical Society, 1983, Part 1, pp.157–168. Zbl0525.01011MR640944
- [39] Schwartz ( Laurent) [1998 (1975)] Les tenseurs, Paris: Hermann, 1998; 1e éd. 1975. MR480597
- [40] Varadarajan ( V.S.) [1984 (1974)] Lie Groups, Lie Algebras and Their Representations, New York: Springer-Verlag, 1984; Englewood Cliffs, NJ: Prentice-Hall, 1974. Zbl0371.22001MR746308
- [41] Weyl ( Hermann) [1946] The Classical Groups, Their Invariants and Representations, second ed., Princeton: Princeton Univ. Press, 1946. Zbl0020.20601MR1488158JFM65.0058.02
- [42] Witt ( Ernst) [1937] Treue Darstellung Liescher Ringe, Journal für die reine und angewandte Mathematik, 177 (1937), pp. 152–160. Zbl0016.24401JFM63.0089.02
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.