The bellows conjecture

Jean-Marc Schlenker

Séminaire Bourbaki (2002-2003)

  • Volume: 45, page 77-96
  • ISSN: 0303-1179

Abstract

top
Bricard and Connelly showed that there are (non-convex) polyhedra in euclidean space which are flexible: one can deform them continuously without changing the shape of their faces. The Bellows Conjecture states that the volume bounded by those polyhedra remains constant during the flex. It was proved recently by I. Sabitov, using algebraic tools which were unexpected in this context.

How to cite

top

Schlenker, Jean-Marc. "La conjecture des soufflets." Séminaire Bourbaki 45 (2002-2003): 77-96. <http://eudml.org/doc/252129>.

@article{Schlenker2002-2003,
abstract = {On sait depuis les travaux de Bricard et de Connelly qu’il existe dans l’espace euclidien des polyèdres (non convexes) qui sont flexibles : on peut les déformer continûment sans changer la forme de leurs faces. La conjecture des soufflets affirme que le volume interieur de ces polyèdres est constant au cours de la déformation. Elle a été démontrée récemment par I. Sabitov, qui a pour cela utilisé des outils algébriques inattendus dans ce contexte.},
author = {Schlenker, Jean-Marc},
journal = {Séminaire Bourbaki},
keywords = {flexible polyhedra; volume; places},
language = {fre},
pages = {77-96},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {La conjecture des soufflets},
url = {http://eudml.org/doc/252129},
volume = {45},
year = {2002-2003},
}

TY - JOUR
AU - Schlenker, Jean-Marc
TI - La conjecture des soufflets
JO - Séminaire Bourbaki
PY - 2002-2003
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 45
SP - 77
EP - 96
AB - On sait depuis les travaux de Bricard et de Connelly qu’il existe dans l’espace euclidien des polyèdres (non convexes) qui sont flexibles : on peut les déformer continûment sans changer la forme de leurs faces. La conjecture des soufflets affirme que le volume interieur de ces polyèdres est constant au cours de la déformation. Elle a été démontrée récemment par I. Sabitov, qui a pour cela utilisé des outils algébriques inattendus dans ce contexte.
LA - fre
KW - flexible polyhedra; volume; places
UR - http://eudml.org/doc/252129
ER -

References

top
  1. [Ale58] A.D. Alexandrow – Konvexe polyeder, Akademie-Verlag, Berlin, 1958. MR92989
  2. [Ale97] V. Alexandrov – “An example of a flexible polyhedron with nonconstant volume in the spherical space”, Beiträge Algebra Geom. 38 (1997), no. 1, p. 11–18. Zbl0881.52007MR1447982
  3. [Ale01] —, “Flexible polyhedra in Minkowski 3-space”, Preprint Jussieu, math.MG/0111003, 2001. 
  4. [And70] E.M. Andreev – “Convex polyhedra in Lobacevskii space”, Mat. Sb.(N.S.) 81 (123) (1970), p. 445–478. Zbl0194.23202MR259734
  5. [And71] —, “On convex polyhedra of finite volume in Lobacevskii space”, Math. USSR Sbornik 12 (3) (1971), p. 225–259. Zbl0252.52005
  6. [AS99] A.V. Astrelin & I.Kh. Sabitov – “A canonical polynomial for the volume of a polyhedron”, Uspekhi Mat. Nauk 54 (1999), no. 2(326), p. 165–166. Zbl0941.52009MR1711247
  7. [Ber77] M. Berger – Géométrie. Vol. 3, CEDIC, Paris, 1977, Convexes et polytopes, polyèdres réguliers, aires et volumes. Zbl0382.51012
  8. [BP01] M. Boileau & J. Porti – Geometrization of 3-orbifolds of cyclic type, Astérisque, vol. 272, Soc. Math. France, Paris, 2001, Appendix A by Michael Heusener and Joan Porti. Zbl0971.57004MR1844891
  9. [Bri96] R. Bricard – “Sur une question de géométrie relative aux polyèdres”, Nouv. Ann. Math. 15 (1896), p. 331–334. JFM27.0407.02
  10. [Bri97] —, “Mémoire sur la théorie de l’octaèdre articulé”, J. Math. Pur. Appl., Liouville 3 (1897), p. 113–148. Zbl28.0624.01JFM28.0624.01
  11. [BZ95] Yu.D. Burago & V.A. Zalgaller – “Isometric piecewise-linear embeddings of two-dimensional manifolds with a polyhedral metric into 𝐑 3 ”, Algebra i Analiz 7 (1995), no. 3, p. 76–95. Zbl0851.52018MR1353490
  12. [Car86] P. Cartier – “Décomposition des polyèdres : le point sur le troisième problème de Hilbert”, Séminaire Bourbaki (1984/85), Astérisque, vol. 133-134, Soc. Math. France, Paris, 1986, p. 261–288. Zbl0589.51032MR837225
  13. [Cau13] A.L. Cauchy – “Sur les polygones et polyèdres, second mémoire”, Journal de l’Ecole Polytechnique 19 (1813), p. 87–98. 
  14. [CHK00] D. Cooper, C.D. Hodgson & S.P. Kerckhoff – Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000, With a postface by Sadayoshi Kojima. Zbl0955.57014MR1778789
  15. [Con77] R. Connelly – “A counterexample to the rigidity conjecture for polyhedra”, Inst. Haut. Etud. Sci., Publ. Math. 47 (1977), p. 333–338. Zbl0375.53034MR488071
  16. [Con80] —, “Conjectures and open questions in rigidity”, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) (Helsinki), Acad. Sci. Fennica, 1980, p. 407–414. Zbl0415.00005MR562634
  17. [Con93] —, “Rigidity”, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, p. 223–271. Zbl0788.52001MR1242981
  18. [Con79] —, “A flexible sphere”, Math. Intelligencer 1 (1978/79), no. 3, p. 130–131. Zbl0404.57018MR494125
  19. [CS94] R. Connelly & H. Servatius – “Higher-order rigidity—what is the proper definition ?”, Discrete Comput. Geom. 11 (1994), no. 2, p. 193–200. Zbl0793.52005MR1254089
  20. [CSW97] R. Connelly, I.Kh. Sabitov & A. Walz – “The Bellows conjecture”, Beitr. Algebra Geom. 38 (1997), p. 1–10, http://www.emis.de/journals/BAG/. Zbl0939.52009MR1447981
  21. [CW94] H. Crapo & W. Whiteley – “Spaces of stresses, projections and parallel drawings for spherical polyhedra”, Beiträge Algebra Geom. 35 (1994), no. 2, p. 259–281. Zbl0819.52018MR1312669
  22. [Dar93] G. Darboux – Leçons sur la théorie générale des surfaces. III, IV, Éditions Jacques Gabay, Sceaux, 1993, Réédition de l’original de 1894 (III) et de l’original de 1896 (IV), Cours de Géométrie de la Faculté des Sciences. 
  23. [Deh01] M. Dehn – “Über den Rauminhalt”, Math. Ann.105 (1901), p. 465–478. Zbl32.0486.01MR1511157JFM32.0486.01
  24. [Deh16] —, “Über den Starrheit konvexer Polyeder”, Math. Ann.77 (1916), p. 466–473. Zbl46.1115.01MR1511873JFM46.1115.01
  25. [Glu75] H. Gluck – “Almost all simply connected closed surfaces are rigid”, Geometric topology (Proc. Conf., Park City, Utah, 1974), Lect. Notes in Math., vol. 438, Springer, Berlin, 1975, p. 225–239. Zbl0315.50002MR400239
  26. [Jen68] B. Jensen – “The algebra of polyhedra and the Dehn-Sydler theorem”, Math. Scand.22 (1968), p. 241–256. Zbl0183.49803MR251633
  27. [Kui79] N.H. Kuiper – “Sphères polyédriques flexibles dans E 3 , d’après Robert Connelly”, Séminaire Bourbaki (1977/78), Lect. Notes in Math., vol. 710, Springer, Berlin, 1979, exposé 514, p. 147–168. Zbl0435.53043MR554219
  28. [Lan72] S. Lang – Introduction to algebraic geometry, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1972, Third printing, with corrections. Zbl0247.14001MR344244
  29. [Leb09] H. Lebèsgue – “Démonstration complète du théorème de Cauchy sur l’égalité des polyèdres convexes”, Intermédiaire des Mathématiciens16 (1909), p. 113–120. 
  30. [LegII] A.-M. Legendre – éléments de géométrie, Paris, 1793 (an II), Première édition, note XII, pp.321-334. 
  31. [Pog73] A.V. Pogorelov – Extrinsic geometry of convex surfaces, Translations of Mathematical Monographs, vol. 35, American Mathematical Society, 1973. Zbl0311.53067MR346714
  32. [RH93] I. Rivin & C.D. Hodgson – “A characterization of compact convex polyhedra in hyperbolic 3-space”, Invent. Math.111 (1993), p. 77–111. Zbl0784.52013MR1193599
  33. [RR00] L. Rodríguez & H. Rosenberg – “Rigidity of certain polyhedra in 𝐑 3 ”, Comment. Math. Helv. 75 (2000), no. 3, p. 478–503. Zbl0968.52018MR1793799
  34. [Sab92] I.Kh. Sabitov – “Local theory of bendings of surfaces”, Geometry, III, Encyclopaedia Math. Sci., vol. 48, Springer, Berlin, 1992, p. 179–256. Zbl0781.53008MR1306736
  35. [Sab96] —, “The volume of a polyhedron as a function of its metric”, Fundam. Prikl. Mat. 2 (1996), no. 4, p. 1235–1246. Zbl0904.52002MR1785783
  36. [Sab98a] —, “The generalized Heron-Tartaglia formula and some of its consequences”, Mat. Sb. 189 (1998), no. 10, p. 105–134. Zbl0941.52020MR1691297
  37. [Sab98b] —, “A proof of the “bellows” conjecture for polyhedra of low topological genus”, Dokl. Akad. Nauk 358 (1998), no. 6, p. 743–746. Zbl0961.52007MR1659487
  38. [Sab98c] —, “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom. 20 (1998), no. 4, p. 405–425. Zbl0922.52006MR1651896
  39. [Sab01] —, “Calculation of polyhedra”, Dokl. Akad. Nauk 377 (2001), no. 2, p. 161–164. Zbl1062.52009MR1833711
  40. [Sab02] —, “Algorithmic solution of the problem of the isometric realization of two-dimensional polyhedral metrics”, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 2, p. 159–172. Zbl1076.51513MR1918847
  41. [Sau35] R. Sauer – “Infinitesimale Verbiegungen zueinander projektiver Fläschen”, Math. Ann111 (1935), p. 71–82. Zbl0010.37402MR1512979JFM61.0744.04
  42. [Ste16] E. Steinitz – “Polyeder und Raumeinteilungen”, Encycl. Math. Wiss.3 (1916), p. 1–139. 
  43. [Sto68] J.J. Stoker – “Geometrical problems concerning polyhedra in the large”, Comm. Pure Appl. Math.21 (1968), p. 119–168. Zbl0159.24301MR222765
  44. [Syd65] J.-P. Sydler – “Conditions nécessaires et suffisantes pour l’équivalence des polyèdres de l’espace euclidien à trois dimensions”, Comment. Math. Helv.40 (1965), p. 43–80. Zbl0135.20906MR192407
  45. [Thu97] W.P. Thurston – “Three-dimensional geometry and topology.”, Recent version of the 1980 notes. http://www.msri.org/publications/books/gt3m/, 1997. Zbl0873.57001
  46. [TW00] T.-S. Tay & W. Whiteley – “A homological interpretation of skeletal ridigity”, Adv. in Appl. Math. 25 (2000), no. 1, p. 102–151. Zbl0968.52019MR1773196

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.