The bellows conjecture
Séminaire Bourbaki (2002-2003)
- Volume: 45, page 77-96
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topSchlenker, Jean-Marc. "La conjecture des soufflets." Séminaire Bourbaki 45 (2002-2003): 77-96. <http://eudml.org/doc/252129>.
@article{Schlenker2002-2003,
abstract = {On sait depuis les travaux de Bricard et de Connelly qu’il existe dans l’espace euclidien des polyèdres (non convexes) qui sont flexibles : on peut les déformer continûment sans changer la forme de leurs faces. La conjecture des soufflets affirme que le volume interieur de ces polyèdres est constant au cours de la déformation. Elle a été démontrée récemment par I. Sabitov, qui a pour cela utilisé des outils algébriques inattendus dans ce contexte.},
author = {Schlenker, Jean-Marc},
journal = {Séminaire Bourbaki},
keywords = {flexible polyhedra; volume; places},
language = {fre},
pages = {77-96},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {La conjecture des soufflets},
url = {http://eudml.org/doc/252129},
volume = {45},
year = {2002-2003},
}
TY - JOUR
AU - Schlenker, Jean-Marc
TI - La conjecture des soufflets
JO - Séminaire Bourbaki
PY - 2002-2003
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 45
SP - 77
EP - 96
AB - On sait depuis les travaux de Bricard et de Connelly qu’il existe dans l’espace euclidien des polyèdres (non convexes) qui sont flexibles : on peut les déformer continûment sans changer la forme de leurs faces. La conjecture des soufflets affirme que le volume interieur de ces polyèdres est constant au cours de la déformation. Elle a été démontrée récemment par I. Sabitov, qui a pour cela utilisé des outils algébriques inattendus dans ce contexte.
LA - fre
KW - flexible polyhedra; volume; places
UR - http://eudml.org/doc/252129
ER -
References
top- [Ale58] A.D. Alexandrow – Konvexe polyeder, Akademie-Verlag, Berlin, 1958. MR92989
- [Ale97] V. Alexandrov – “An example of a flexible polyhedron with nonconstant volume in the spherical space”, Beiträge Algebra Geom. 38 (1997), no. 1, p. 11–18. Zbl0881.52007MR1447982
- [Ale01] —, “Flexible polyhedra in Minkowski 3-space”, Preprint Jussieu, math.MG/0111003, 2001.
- [And70] E.M. Andreev – “Convex polyhedra in Lobacevskii space”, Mat. Sb.(N.S.) 81 (123) (1970), p. 445–478. Zbl0194.23202MR259734
- [And71] —, “On convex polyhedra of finite volume in Lobacevskii space”, Math. USSR Sbornik 12 (3) (1971), p. 225–259. Zbl0252.52005
- [AS99] A.V. Astrelin & I.Kh. Sabitov – “A canonical polynomial for the volume of a polyhedron”, Uspekhi Mat. Nauk 54 (1999), no. 2(326), p. 165–166. Zbl0941.52009MR1711247
- [Ber77] M. Berger – Géométrie. Vol. 3, CEDIC, Paris, 1977, Convexes et polytopes, polyèdres réguliers, aires et volumes. Zbl0382.51012
- [BP01] M. Boileau & J. Porti – Geometrization of 3-orbifolds of cyclic type, Astérisque, vol. 272, Soc. Math. France, Paris, 2001, Appendix A by Michael Heusener and Joan Porti. Zbl0971.57004MR1844891
- [Bri96] R. Bricard – “Sur une question de géométrie relative aux polyèdres”, Nouv. Ann. Math. 15 (1896), p. 331–334. JFM27.0407.02
- [Bri97] —, “Mémoire sur la théorie de l’octaèdre articulé”, J. Math. Pur. Appl., Liouville 3 (1897), p. 113–148. Zbl28.0624.01JFM28.0624.01
- [BZ95] Yu.D. Burago & V.A. Zalgaller – “Isometric piecewise-linear embeddings of two-dimensional manifolds with a polyhedral metric into ”, Algebra i Analiz 7 (1995), no. 3, p. 76–95. Zbl0851.52018MR1353490
- [Car86] P. Cartier – “Décomposition des polyèdres : le point sur le troisième problème de Hilbert”, Séminaire Bourbaki (1984/85), Astérisque, vol. 133-134, Soc. Math. France, Paris, 1986, p. 261–288. Zbl0589.51032MR837225
- [Cau13] A.L. Cauchy – “Sur les polygones et polyèdres, second mémoire”, Journal de l’Ecole Polytechnique 19 (1813), p. 87–98.
- [CHK00] D. Cooper, C.D. Hodgson & S.P. Kerckhoff – Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000, With a postface by Sadayoshi Kojima. Zbl0955.57014MR1778789
- [Con77] R. Connelly – “A counterexample to the rigidity conjecture for polyhedra”, Inst. Haut. Etud. Sci., Publ. Math. 47 (1977), p. 333–338. Zbl0375.53034MR488071
- [Con80] —, “Conjectures and open questions in rigidity”, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) (Helsinki), Acad. Sci. Fennica, 1980, p. 407–414. Zbl0415.00005MR562634
- [Con93] —, “Rigidity”, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, p. 223–271. Zbl0788.52001MR1242981
- [Con79] —, “A flexible sphere”, Math. Intelligencer 1 (1978/79), no. 3, p. 130–131. Zbl0404.57018MR494125
- [CS94] R. Connelly & H. Servatius – “Higher-order rigidity—what is the proper definition ?”, Discrete Comput. Geom. 11 (1994), no. 2, p. 193–200. Zbl0793.52005MR1254089
- [CSW97] R. Connelly, I.Kh. Sabitov & A. Walz – “The Bellows conjecture”, Beitr. Algebra Geom. 38 (1997), p. 1–10, http://www.emis.de/journals/BAG/. Zbl0939.52009MR1447981
- [CW94] H. Crapo & W. Whiteley – “Spaces of stresses, projections and parallel drawings for spherical polyhedra”, Beiträge Algebra Geom. 35 (1994), no. 2, p. 259–281. Zbl0819.52018MR1312669
- [Dar93] G. Darboux – Leçons sur la théorie générale des surfaces. III, IV, Éditions Jacques Gabay, Sceaux, 1993, Réédition de l’original de 1894 (III) et de l’original de 1896 (IV), Cours de Géométrie de la Faculté des Sciences.
- [Deh01] M. Dehn – “Über den Rauminhalt”, Math. Ann.105 (1901), p. 465–478. Zbl32.0486.01MR1511157JFM32.0486.01
- [Deh16] —, “Über den Starrheit konvexer Polyeder”, Math. Ann.77 (1916), p. 466–473. Zbl46.1115.01MR1511873JFM46.1115.01
- [Glu75] H. Gluck – “Almost all simply connected closed surfaces are rigid”, Geometric topology (Proc. Conf., Park City, Utah, 1974), Lect. Notes in Math., vol. 438, Springer, Berlin, 1975, p. 225–239. Zbl0315.50002MR400239
- [Jen68] B. Jensen – “The algebra of polyhedra and the Dehn-Sydler theorem”, Math. Scand.22 (1968), p. 241–256. Zbl0183.49803MR251633
- [Kui79] N.H. Kuiper – “Sphères polyédriques flexibles dans , d’après Robert Connelly”, Séminaire Bourbaki (1977/78), Lect. Notes in Math., vol. 710, Springer, Berlin, 1979, exposé 514, p. 147–168. Zbl0435.53043MR554219
- [Lan72] S. Lang – Introduction to algebraic geometry, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1972, Third printing, with corrections. Zbl0247.14001MR344244
- [Leb09] H. Lebèsgue – “Démonstration complète du théorème de Cauchy sur l’égalité des polyèdres convexes”, Intermédiaire des Mathématiciens16 (1909), p. 113–120.
- [LegII] A.-M. Legendre – éléments de géométrie, Paris, 1793 (an II), Première édition, note XII, pp.321-334.
- [Pog73] A.V. Pogorelov – Extrinsic geometry of convex surfaces, Translations of Mathematical Monographs, vol. 35, American Mathematical Society, 1973. Zbl0311.53067MR346714
- [RH93] I. Rivin & C.D. Hodgson – “A characterization of compact convex polyhedra in hyperbolic 3-space”, Invent. Math.111 (1993), p. 77–111. Zbl0784.52013MR1193599
- [RR00] L. Rodríguez & H. Rosenberg – “Rigidity of certain polyhedra in ”, Comment. Math. Helv. 75 (2000), no. 3, p. 478–503. Zbl0968.52018MR1793799
- [Sab92] I.Kh. Sabitov – “Local theory of bendings of surfaces”, Geometry, III, Encyclopaedia Math. Sci., vol. 48, Springer, Berlin, 1992, p. 179–256. Zbl0781.53008MR1306736
- [Sab96] —, “The volume of a polyhedron as a function of its metric”, Fundam. Prikl. Mat. 2 (1996), no. 4, p. 1235–1246. Zbl0904.52002MR1785783
- [Sab98a] —, “The generalized Heron-Tartaglia formula and some of its consequences”, Mat. Sb. 189 (1998), no. 10, p. 105–134. Zbl0941.52020MR1691297
- [Sab98b] —, “A proof of the “bellows” conjecture for polyhedra of low topological genus”, Dokl. Akad. Nauk 358 (1998), no. 6, p. 743–746. Zbl0961.52007MR1659487
- [Sab98c] —, “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom. 20 (1998), no. 4, p. 405–425. Zbl0922.52006MR1651896
- [Sab01] —, “Calculation of polyhedra”, Dokl. Akad. Nauk 377 (2001), no. 2, p. 161–164. Zbl1062.52009MR1833711
- [Sab02] —, “Algorithmic solution of the problem of the isometric realization of two-dimensional polyhedral metrics”, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 2, p. 159–172. Zbl1076.51513MR1918847
- [Sau35] R. Sauer – “Infinitesimale Verbiegungen zueinander projektiver Fläschen”, Math. Ann111 (1935), p. 71–82. Zbl0010.37402MR1512979JFM61.0744.04
- [Ste16] E. Steinitz – “Polyeder und Raumeinteilungen”, Encycl. Math. Wiss.3 (1916), p. 1–139.
- [Sto68] J.J. Stoker – “Geometrical problems concerning polyhedra in the large”, Comm. Pure Appl. Math.21 (1968), p. 119–168. Zbl0159.24301MR222765
- [Syd65] J.-P. Sydler – “Conditions nécessaires et suffisantes pour l’équivalence des polyèdres de l’espace euclidien à trois dimensions”, Comment. Math. Helv.40 (1965), p. 43–80. Zbl0135.20906MR192407
- [Thu97] W.P. Thurston – “Three-dimensional geometry and topology.”, Recent version of the 1980 notes. http://www.msri.org/publications/books/gt3m/, 1997. Zbl0873.57001
- [TW00] T.-S. Tay & W. Whiteley – “A homological interpretation of skeletal ridigity”, Adv. in Appl. Math. 25 (2000), no. 1, p. 102–151. Zbl0968.52019MR1773196
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.