SLE and conformal invariance
Séminaire Bourbaki (2003-2004)
- Volume: 46, page 15-28
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L.V. Ahlfors. Conformal Invariants, Topics in Geometric Function Theory. McGraw-Hill, 1973. Zbl0272.30012MR357743
- [2] V. Beffara. The dimension of the SLE curves. Prépublication. Zbl1165.60007
- [3] J. Cardy. Critical percolation in finite geometries. J. Phys. A, pages L201–L206, 1992. Zbl0965.82501MR1151081
- [4] J.B. Conway. Functions of one complex variable. II. Springer-Verlag, New York, 1995. Zbl0277.30001MR1344449
- [5] B. Duplantier and K.-H. Kwon. Conformal invariance and intersections of random walks. Phys. Rev. Lett., 61 :2514–2517, 1988. Zbl0652.60073
- [6] C. Itzykson and J.-M. Drouffe. Statistical field theory vol. 2. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1989. Zbl0825.81002MR1175177
- [7] G.F. Lawler. An introduction to the Stochastic Loewner Evolution. In Random walks and geometry, pages 261–293. Walter de Gruyter, Berlin, 2004. Zbl1061.60107MR2087784
- [8] G.F. Lawler, O. Schramm, and W. Werner. Values of Brownian intersection exponents I : Half-plane exponents et II : Plane exponents. Acta Math., 187 :237–273 & 275–308, 2001. Zbl1005.60097MR1879850
- [9] G.F. Lawler, O. Schramm, and W. Werner. Values of Brownian intersection exponents III : Two-sided exponents. Ann. Inst. H. Poincaré. Probab. Statist., 38 :109–123, 2002. Zbl1006.60075MR1899232
- [10] G.F. Lawler, O. Schramm, and W. Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab., 32 :939–995, 2004. Zbl1126.82011MR2044671
- [11] G.F. Lawler, O. Schramm, and W. Werner. On the scaling limit of self-avoiding walks. In Fractal geometry and application, A jubilee of Benoît Mandelbrot, Proc. Symp. Pure Math. American Mathematical Society. à paraître. Zbl1069.60089
- [12] G.F. Lawler, O. Schramm, and W. Werner. Conformal restriction properties. The chordal case. J. Amer. Math. Soc., 16 :917–955, 2003. Zbl1030.60096MR1992830
- [13] D. Marshall and S. Rohde. The Loewner differential equation and slit mappings. Prépublication. Zbl1078.30005
- [14] S. Rohde and O. Schramm. Basic properties of SLE. Ann. of Math. à paraître. Zbl1081.60069
- [15] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118 :221–288, 2001. Zbl0968.60093MR1776084
- [16] S. Smirnov. Critical percolation in the plane : conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333 :239–244, 2001. Zbl0985.60090MR1851632
- [17] S. Smirnov and W. Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett., 8 :729–744, 2001. Zbl1009.60087MR1879816
- [18] K. Symanzik. Euclidean Quantum Field Theory. In L. Jost, editor, Local Quantum Theory, Proc. International School of Physics “Enrico Fermi” XLV, page 152. Academic Press, New York, 1969.
- [19] W. Werner. Random planar curves and Schramm-Loewner evolutions. In Lectures on Probability Theory and Statistics, École d’été de probabilités de Saint-Flour 2002, volume 1840 of Lecture Notes in Mathematics, pages 107–195. Springer, 2004. Zbl1057.60078MR2079672