SLE and conformal invariance
Séminaire Bourbaki (2003-2004)
- Volume: 46, page 15-28
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topBertoin, Jean. "SLE et invariance conforme." Séminaire Bourbaki 46 (2003-2004): 15-28. <http://eudml.org/doc/252142>.
@article{Bertoin2003-2004,
abstract = {Les processus de Schramm-Loewner (SLE) induisent des courbes aléatoires du plan complexe, qui vérifient une propriété d’invariance conforme. Ce sont des outils fondamentaux pour la compréhension du comportement asymptotique en régime critique de certains modèles discrets intervenant en physique statistique ; ils ont permis notamment d’établir rigoureusement certaines conjectures importantes dans ce domaine.},
author = {Bertoin, Jean},
journal = {Séminaire Bourbaki},
keywords = {stochastic Loewner equation; conformal invariance; planar brownian motion; percolation; random walk; scaling limit},
language = {fre},
pages = {15-28},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {SLE et invariance conforme},
url = {http://eudml.org/doc/252142},
volume = {46},
year = {2003-2004},
}
TY - JOUR
AU - Bertoin, Jean
TI - SLE et invariance conforme
JO - Séminaire Bourbaki
PY - 2003-2004
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 46
SP - 15
EP - 28
AB - Les processus de Schramm-Loewner (SLE) induisent des courbes aléatoires du plan complexe, qui vérifient une propriété d’invariance conforme. Ce sont des outils fondamentaux pour la compréhension du comportement asymptotique en régime critique de certains modèles discrets intervenant en physique statistique ; ils ont permis notamment d’établir rigoureusement certaines conjectures importantes dans ce domaine.
LA - fre
KW - stochastic Loewner equation; conformal invariance; planar brownian motion; percolation; random walk; scaling limit
UR - http://eudml.org/doc/252142
ER -
References
top- [1] L.V. Ahlfors. Conformal Invariants, Topics in Geometric Function Theory. McGraw-Hill, 1973. Zbl0272.30012MR357743
- [2] V. Beffara. The dimension of the SLE curves. Prépublication. Zbl1165.60007
- [3] J. Cardy. Critical percolation in finite geometries. J. Phys. A, pages L201–L206, 1992. Zbl0965.82501MR1151081
- [4] J.B. Conway. Functions of one complex variable. II. Springer-Verlag, New York, 1995. Zbl0277.30001MR1344449
- [5] B. Duplantier and K.-H. Kwon. Conformal invariance and intersections of random walks. Phys. Rev. Lett., 61 :2514–2517, 1988. Zbl0652.60073
- [6] C. Itzykson and J.-M. Drouffe. Statistical field theory vol. 2. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1989. Zbl0825.81002MR1175177
- [7] G.F. Lawler. An introduction to the Stochastic Loewner Evolution. In Random walks and geometry, pages 261–293. Walter de Gruyter, Berlin, 2004. Zbl1061.60107MR2087784
- [8] G.F. Lawler, O. Schramm, and W. Werner. Values of Brownian intersection exponents I : Half-plane exponents et II : Plane exponents. Acta Math., 187 :237–273 & 275–308, 2001. Zbl1005.60097MR1879850
- [9] G.F. Lawler, O. Schramm, and W. Werner. Values of Brownian intersection exponents III : Two-sided exponents. Ann. Inst. H. Poincaré. Probab. Statist., 38 :109–123, 2002. Zbl1006.60075MR1899232
- [10] G.F. Lawler, O. Schramm, and W. Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab., 32 :939–995, 2004. Zbl1126.82011MR2044671
- [11] G.F. Lawler, O. Schramm, and W. Werner. On the scaling limit of self-avoiding walks. In Fractal geometry and application, A jubilee of Benoît Mandelbrot, Proc. Symp. Pure Math. American Mathematical Society. à paraître. Zbl1069.60089
- [12] G.F. Lawler, O. Schramm, and W. Werner. Conformal restriction properties. The chordal case. J. Amer. Math. Soc., 16 :917–955, 2003. Zbl1030.60096MR1992830
- [13] D. Marshall and S. Rohde. The Loewner differential equation and slit mappings. Prépublication. Zbl1078.30005
- [14] S. Rohde and O. Schramm. Basic properties of SLE. Ann. of Math. à paraître. Zbl1081.60069
- [15] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118 :221–288, 2001. Zbl0968.60093MR1776084
- [16] S. Smirnov. Critical percolation in the plane : conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333 :239–244, 2001. Zbl0985.60090MR1851632
- [17] S. Smirnov and W. Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett., 8 :729–744, 2001. Zbl1009.60087MR1879816
- [18] K. Symanzik. Euclidean Quantum Field Theory. In L. Jost, editor, Local Quantum Theory, Proc. International School of Physics “Enrico Fermi” XLV, page 152. Academic Press, New York, 1969.
- [19] W. Werner. Random planar curves and Schramm-Loewner evolutions. In Lectures on Probability Theory and Statistics, École d’été de probabilités de Saint-Flour 2002, volume 1840 of Lecture Notes in Mathematics, pages 107–195. Springer, 2004. Zbl1057.60078MR2079672
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.