### $\mathcal{R}$-matrix and Baxter $\mathcal{Q}$-operators for the noncompact $\mathrm{SL}(N,\u2102)$ invariant spin chain.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We study continuous Anderson Hamiltonians with non-degenerate single site probability distribution of bounded support, without any regularity condition on the single site probability distribution. We prove the existence of a strong form of localization at the bottom of the spectrum, which includes Anderson localization (pure point spectrum with exponentially decaying eigenfunctions) with finite multiplicity of eigenvalues, dynamical localization (no spreading of wave packets under the time evolution),...

We introduce a model, similar to diffusion limited aggregation (DLA), which serves as a discrete analog of the continuous dynamics of evaporation of thin liquid films. Within mean field approximation the dynamics of this model, averaged over many realizations of the growing cluster, reduces to that of the idealized evaporation model in which surface tension is neglected. However fluctuations beyond the mean field level play an important role, and...

We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...

In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.

In this short note we correct a conceptual error in the heuristic derivation of a kinetic equation used for the description of a one-dimensional granular medium in the so called quasi-elastic limit, presented by the same authors in reference[1]. The equation we derived is however correct so that, the rigorous analysis on this equation, which constituted the main purpose of that paper, remains unchanged.

The study of the fluctuations in the steady state of a heated granular system is reviewed. A Boltzmann-Langevin description can be built requiring consistency with the equations for the one- and two-particle correlation functions. From the Boltzmann-Langevin equation, Langevin equations for the total energy and the transverse velocity field are derived. The existence of a fluctuation-dissipation relation for the transverse velocity field is also...