Arithmetic progressions in primes
Séminaire Bourbaki (2004-2005)
- Volume: 47, page 229-246
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Erdös & T. Turán – “On some sequences of integers”, 11 (1936), p. 261–264. Zbl0015.15203MR1574918JFM62.1126.01
- [2] H. Furstenberg – “Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions”, J. Analyse Math.31 (1977), p. 204–256. Zbl0347.28016MR498471
- [3] H. Furstenberg, Y. Katznelson & D. Ornstein – “The ergodic theoretical proof of Szemerédi’s theorem”, Bull. Amer. Math. Soc. (N.S.) 7 (1982), p. 527–552. Zbl0523.28017MR670131
- [4] D. Goldston & C.Y. Yıldırım – “Small Gaps Between Primes I”, prépublication ; arXiv : math.NT/0504336.
- [5] T. Gowers – “A new proof of Szemerédi’s theorem”, 11 (2001), p. 465–588. Zbl1028.11005MR1844079
- [6] B. Green & T. Tao – “The primes contain arbitrarily long arithmetic progressions”, Ann. of Math. (2) (2004), à paraître ; arXiv : math.NT/0404188. Zbl1191.11025MR2415379
- [7] G.H. Hardy & J.E. Littlewood – “Some problems of “partition numerorum” III : on the expression of a number as a sum of primes”, Acta Arith. 44 (1923), p. 1–70. Zbl48.0143.04MR1555183JFM48.0143.04
- [8] B. Host & B. Kra – “Nonconventional ergodic averages and nilmanifolds”, Ann. of Math. (2) 161 (2005), p. 397–488. Zbl1077.37002MR2150389
- [9] E. Szemerédi – “On sets of integers containing no elements in arithmetic progression”, Acta Arith.27 (1975), p. 199–245. Zbl0303.10056MR369312
- [10] T. Tao – “A quantitative ergodic proof of Szemerédi’s theorem”, Electron. J. Combin., à paraître ; arXiv : math.CO/0405251. MR2274314
- [11] —, “A remark on Goldston-Yıldırım correlation estimates”, prépublication disponible à : http://www.math.ucla.edu/~tao/preprints.
- [12] J.G. van der Corput – “Über Summen von Primzahlen und Primzahlquadraten”, Math. Ann.116 (1939), p. 1–50. Zbl0019.19602MR1513216