Thin points for brownian motion
Amir Dembo; Yuval Peres; Jay Rosen; Ofer Zeitouni
Annales de l'I.H.P. Probabilités et statistiques (2000)
- Volume: 36, Issue: 6, page 749-774
- ISSN: 0246-0203
Access Full Article
topHow to cite
topDembo, Amir, et al. "Thin points for brownian motion." Annales de l'I.H.P. Probabilités et statistiques 36.6 (2000): 749-774. <http://eudml.org/doc/77678>.
@article{Dembo2000,
author = {Dembo, Amir, Peres, Yuval, Rosen, Jay, Zeitouni, Ofer},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {thin points; Hausdorff dimension; packing dimension; occupation measure; escape time; long-range dependence; multifractal spectrum; random fractal},
language = {eng},
number = {6},
pages = {749-774},
publisher = {Gauthier-Villars},
title = {Thin points for brownian motion},
url = {http://eudml.org/doc/77678},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Dembo, Amir
AU - Peres, Yuval
AU - Rosen, Jay
AU - Zeitouni, Ofer
TI - Thin points for brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 6
SP - 749
EP - 774
LA - eng
KW - thin points; Hausdorff dimension; packing dimension; occupation measure; escape time; long-range dependence; multifractal spectrum; random fractal
UR - http://eudml.org/doc/77678
ER -
References
top- [1] Ciesielski Z., Taylor S.J., First passage and sojourn times and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc.103 (1962) 434-452. Zbl0121.13003MR143257
- [2] Dembo A., Peres Y., Rosen J., Zeitouni O., Thick points for spatial Brownian motion: Multifractal analysis of occupation measure, Ann. Probab.28 (2000) 1-35. Zbl1130.60311MR1755996
- [3] Dembo A., Peres Y., Rosen J., Zeitouni O., Thick points for planar Brownian motion and the Erdös-Taylor conjecture on random walk, Acta Math., to appear. Zbl1008.60063MR1846031
- [4] Getoor R.K., The Brownian escape process, Ann. Probab.7 (1979) 864-867. Zbl0416.60086MR542136
- [5] Gruet J.C., Shi Z., The occupation time of Brownian motion in a ball, J. Theoret. Probab.9 (1996) 429-445. Zbl0870.60072MR1385406
- [6] Joyce H., Preiss D., On the existence of subsets of finite positive packing measure, Mathematika42 (1995) 15-24. Zbl0824.28006MR1346667
- [7] Kahane J.-P., Some Random Series of Functions, 2nd edition, Cambridge University Press, 1985. Zbl0571.60002MR833073
- [8] Kaufman R., Une propriété métrique du mouvement Brownien, C. R. Acad. Sci. Paris268 (1969) 727-728. Zbl0174.21401MR240874
- [9] Kono N., The exact Hausdorff measure of irregularity points for a Brownian path, Z. W.40 (1977) 257-282. Zbl0376.60081MR458564
- [10] Khoshnevisan D., Peres Y., Xiao Y., Limsup random fractals, Elect. J. Probab.5 (2000), paper 4, 1-24. Zbl0949.60025MR1743726
- [11] Mattila P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. Zbl0819.28004MR1333890
- [12] Munkres J.R., Topology: A First Course, Prentice-Hall, Englewood Cliffs, NJ, 1975. Zbl0306.54001MR464128
- [ 13] Orey S., Taylor S.J., How often on a Brownian path does the law of the iterated logarithm fail?, Proc. Lond. Math. Soc.28 (1974) 174-192. Zbl0292.60128MR359031
- [14] Perkins E.A., Taylor S.J., Uniform measure results for the image of subsets under Brownian motion, Probab. Theory Related Fields76 (1987) 257-289. Zbl0613.60071MR912654
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.