Some remarks on multidimensional systems of conservation laws

Alberto Bressan

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 3-4, page 225-233
  • ISSN: 1120-6330

Abstract

top
This note is concerned with the Cauchy problem for hyperbolic systems of conservation laws in several space dimensions. We first discuss an example of ill-posedness, for a special system having a radial symmetry property. Some conjectures are formulated, on the compactness of the set of flow maps generated by vector fields with bounded variation.

How to cite

top

Bressan, Alberto. "Some remarks on multidimensional systems of conservation laws." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 225-233. <http://eudml.org/doc/252274>.

@article{Bressan2004,
abstract = {This note is concerned with the Cauchy problem for hyperbolic systems of conservation laws in several space dimensions. We first discuss an example of ill-posedness, for a special system having a radial symmetry property. Some conjectures are formulated, on the compactness of the set of flow maps generated by vector fields with bounded variation.},
author = {Bressan, Alberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hyperbolic system; Conservation laws; Several space dimensions},
language = {eng},
month = {12},
number = {3-4},
pages = {225-233},
publisher = {Accademia Nazionale dei Lincei},
title = {Some remarks on multidimensional systems of conservation laws},
url = {http://eudml.org/doc/252274},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Bressan, Alberto
TI - Some remarks on multidimensional systems of conservation laws
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 225
EP - 233
AB - This note is concerned with the Cauchy problem for hyperbolic systems of conservation laws in several space dimensions. We first discuss an example of ill-posedness, for a special system having a radial symmetry property. Some conjectures are formulated, on the compactness of the set of flow maps generated by vector fields with bounded variation.
LA - eng
KW - Hyperbolic system; Conservation laws; Several space dimensions
UR - http://eudml.org/doc/252274
ER -

References

top
  1. AMBROSIO, L., Transport equation and the Cauchy problem for B V vector fields. Preprint 2003. Zbl1075.35087MR2096794DOI10.1007/s00222-004-0367-2
  2. BRENNER, P., The Cauchy problem for the symmetric hyperbolic systems in L p . Math. Scand., 19, 1966, 27-37. Zbl0154.11304MR212427
  3. BRESSAN, A., Hyperbolic systems of conservation laws. The one dimensional Cauchy problem. Oxford University Press, 2000. Zbl0997.35002
  4. BRESSAN, A., An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova, 110, 2003, 103-117. Zbl1114.35123MR2033003
  5. BRESSAN, A., A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova, 110, 2003, 97-102. Zbl1114.05002MR2033002
  6. BRESSAN, A. - LIU, T.P. - YANG, T., L 1 stability estimates for n × n conservation laws. Arch. Rational Mech. Anal., 149, 1999, 1-22. Zbl0938.35093MR1723032DOI10.1007/s002050050165
  7. DAFERMOS, C., Hyperbolic conservation laws in continuum physics. Springer-Verlag, Berlin1999. Zbl1196.35001
  8. DIPERNA, R. - LIONS, P.L., Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98, 1989, 511-517. Zbl0696.34049MR1022305DOI10.1007/BF01393835
  9. GÄRDING, L., Problèmes de Cauchy pour les systèmes quasi-linéaires d’ordre un strictement hyperboliques. In: Les E.D.P’s, vol. 117, Paris1963, Colloques Internationaux du CNRS, 33-40. Zbl0239.35013MR171079
  10. GLIMM, J., Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math., 18, 1965, 697-715. Zbl0141.28902MR194770
  11. KRUZHKOV, S., First-order quasilinear equations with several space variables. Math. USSR Sbornik, 10, 1970, 217-273. Zbl0215.16203
  12. MAJDA, A., Compressible fluid flow and systems of conservation laws in several space variables. Springer-Verlag, New York1984. Zbl0537.76001MR748308DOI10.1007/978-1-4612-1116-7
  13. PANOV, E.Y., On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws. Sbornik: Mathematics, 191, 2000, 121-150. Zbl0954.35107MR1753495DOI10.1070/SM2000v191n01ABEH000450
  14. RAUCH, J., B V estimates fail for most quasilinear hyperbolic systems in dimensions greater than one. Comm. Math. Phys., 106, 1986, 481-484. Zbl0619.35073MR859822
  15. SERRE, D., Solutions classiques globales des équations d’Euler pour un fluide parfait compressible. Ann. Inst. Fourier, 47, 1997, 139-153. Zbl0864.35069MR1437182
  16. SERRE, D., Systems of Conservation Laws I. Cambridge University Press, 2000. Zbl0936.35001MR1775057
  17. SMOLLER, J., Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York1983. Zbl0807.35002MR688146
  18. ZHENG, Y., Systems of conservation laws: two-dimensional Riemann problems. Birkhäuser, 2001. Zbl0971.35002MR1839813DOI10.1007/978-1-4612-0141-0
  19. ZIEMER, W.P., Weakly Differentiable Functions. Springer-Verlag, New York1989. Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.