On the product property of the Carathéodory pseudodistance

José M. Isidro; Jean-Pierre Vigué

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2000)

  • Volume: 11, Issue: 1, page 21-26
  • ISSN: 1120-6330

Abstract

top
We prove that, for certain domains D , continuous product of domains D ω , the Carathéodory pseudodistance satisfies the following product property C D f , g = sup ω C D ω f ω , g ω

How to cite

top

Isidro, José M., and Vigué, Jean-Pierre. "On the product property of the Carathéodory pseudodistance." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.1 (2000): 21-26. <http://eudml.org/doc/252324>.

@article{Isidro2000,
abstract = {We prove that, for certain domains \( \mathbb\{D\} \), continuous product of domains \( D\_\{\omega\} \) , the Carathéodory pseudodistance satisfies the following product property \( C\_\{\mathbb\{D\}\} (f,g) = \sup\_\{\omega\} C\_\{D\_\{\omega\}\} (f(\omega),g(\omega)) \)},
author = {Isidro, José M., Vigué, Jean-Pierre},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Carathéodory pseudodistance; Product domains; Product property; product domains; product property},
language = {eng},
month = {3},
number = {1},
pages = {21-26},
publisher = {Accademia Nazionale dei Lincei},
title = {On the product property of the Carathéodory pseudodistance},
url = {http://eudml.org/doc/252324},
volume = {11},
year = {2000},
}

TY - JOUR
AU - Isidro, José M.
AU - Vigué, Jean-Pierre
TI - On the product property of the Carathéodory pseudodistance
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/3//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - 1
SP - 21
EP - 26
AB - We prove that, for certain domains \( \mathbb{D} \), continuous product of domains \( D_{\omega} \) , the Carathéodory pseudodistance satisfies the following product property \( C_{\mathbb{D}} (f,g) = \sup_{\omega} C_{D_{\omega}} (f(\omega),g(\omega)) \)
LA - eng
KW - Carathéodory pseudodistance; Product domains; Product property; product domains; product property
UR - http://eudml.org/doc/252324
ER -

References

top
  1. Dineen, S. - Timoney, R. M. - Vigué, J.-P., Pseudodistances invariantes sur les domaines d’un espace localement convexe. Ann. Scu. Norm. Sup. di Pisa, XII (4), 1985, 515-529. Zbl0603.46052MR848840
  2. Franzoni, T. - Vesentini, E., Holomorphic maps and invariant distances. North Holland Mathematics Studies, 40, North Holland, Amsterdam1980. Zbl0447.46040MR563329
  3. Jarnicki, M. - Pflug, P., The Carathéodory pseudodistance has the product property. Math. Ann., 285, 1989, 161-164. Zbl0662.32023MR1010198DOI10.1007/BF01442679
  4. Jarnicki, M. - Pflug, P., Invariant distances and metrics in complex analysis. De Gruyter expositions in mathematics, 9, De Gruyter, Berlin1993. Zbl0789.32001MR1242120DOI10.1515/9783110870312
  5. Vigué, J.-P., Automorphismes analytiques des produits continus de domaines bornés. Ann. Sci. Ecole Norm. Sup., 8, 1978, 229-246. Zbl0405.32007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.