Displaying similar documents to “Nonlinear equations on Carnot groups and curvature problems for CR manifolds”

Curvature homogeneous spaces whose curvature tensors have large symmetries

Kazumi Tsukada (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study curvature homogeneous spaces or locally homogeneous spaces whose curvature tensors are invariant by the action of “large" Lie subalgebras 𝔥 of 𝔰𝔬 ( n ) . In this paper we deal with the cases of 𝔥 = 𝔰𝔬 ( r ) 𝔰𝔬 ( n - r ) ( 2 r n - r ) , 𝔰𝔬 ( n - 2 ) , and the Lie algebras of Lie groups acting transitively on spheres, and classify such curvature homogeneous spaces or locally homogeneous spaces.

The mean curvature of a Lipschitz continuous manifold

Elisabetta Barozzi, Eduardo Gonzalez, Umberto Massari (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

The paper is devoted to the description of some connections between the mean curvature in a distributional sense and the mean curvature in a variational sense for several classes of non-smooth sets. We prove the existence of the mean curvature measure of E by using a technique introduced in [4] and based on the concept of variational mean curvature. More precisely we prove that, under suitable assumptions, the mean curvature measure of E is the weak limit (in the sense of distributions)...

Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere

Joël Merker, Masoud Sabzevari (2012)

Open Mathematics

Similarity:

We study effectively the Cartan geometry of Levi-nondegenerate C 6-smooth hypersurfaces M 3 in ℂ2. Notably, we present the so-called curvature function of a related Tanaka-type normal connection explicitly in terms of a graphing function for M, which is the initial, single available datum. Vanishing of this curvature function then characterizes explicitly the local biholomorphic equivalence of such M 3 ⊂ ℂ2 to the Heisenberg sphere ℍ3, such M’s being necessarily real analytic. ...

Uniqueness results for the Minkowski problem extended to hedgehogs

Yves Martinez-Maure (2012)

Open Mathematics

Similarity:

The classical Minkowski problem has a natural extension to hedgehogs, that is to Minkowski differences of closed convex hypersurfaces. This extended Minkowski problem is much more difficult since it essentially boils down to the question of solutions of certain Monge-Ampère equations of mixed type on the unit sphere 𝕊 n of ℝn+1. In this paper, we mainly consider the uniqueness question and give first results.