The mean curvature of a Lipschitz continuous manifold

Elisabetta Barozzi; Eduardo Gonzalez; Umberto Massari

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2003)

  • Volume: 14, Issue: 4, page 257-277
  • ISSN: 1120-6330

Abstract

top
The paper is devoted to the description of some connections between the mean curvature in a distributional sense and the mean curvature in a variational sense for several classes of non-smooth sets. We prove the existence of the mean curvature measure of E by using a technique introduced in [4] and based on the concept of variational mean curvature. More precisely we prove that, under suitable assumptions, the mean curvature measure of E is the weak limit (in the sense of distributions) of the mean curvatures of a sequence of regular n -dimensional manifolds M j convergent to E . The manifolds M j are closely related to the level surfaces of the variational mean curvature H E of E .

How to cite

top

Barozzi, Elisabetta, Gonzalez, Eduardo, and Massari, Umberto. "The mean curvature of a Lipschitz continuous manifold." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.4 (2003): 257-277. <http://eudml.org/doc/252366>.

@article{Barozzi2003,
abstract = {The paper is devoted to the description of some connections between the mean curvature in a distributional sense and the mean curvature in a variational sense for several classes of non-smooth sets. We prove the existence of the mean curvature measure of $\partial E$ by using a technique introduced in [4] and based on the concept of variational mean curvature. More precisely we prove that, under suitable assumptions, the mean curvature measure of $\partial E$ is the weak limit (in the sense of distributions) of the mean curvatures of a sequence of regular $n$-dimensional manifolds $M_\{j\}$ convergent to $\partial E$. The manifolds $M_\{j\}$ are closely related to the level surfaces of the variational mean curvature $H_\{E\}$ of $E$.},
author = {Barozzi, Elisabetta, Gonzalez, Eduardo, Massari, Umberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Calculus of Variations; Geometric Measure Theory; Functions of Bounded Variation; Mean Curvature; functions of bounded variation; mean variational mean curvature},
language = {eng},
month = {12},
number = {4},
pages = {257-277},
publisher = {Accademia Nazionale dei Lincei},
title = {The mean curvature of a Lipschitz continuous manifold},
url = {http://eudml.org/doc/252366},
volume = {14},
year = {2003},
}

TY - JOUR
AU - Barozzi, Elisabetta
AU - Gonzalez, Eduardo
AU - Massari, Umberto
TI - The mean curvature of a Lipschitz continuous manifold
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/12//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 4
SP - 257
EP - 277
AB - The paper is devoted to the description of some connections between the mean curvature in a distributional sense and the mean curvature in a variational sense for several classes of non-smooth sets. We prove the existence of the mean curvature measure of $\partial E$ by using a technique introduced in [4] and based on the concept of variational mean curvature. More precisely we prove that, under suitable assumptions, the mean curvature measure of $\partial E$ is the weak limit (in the sense of distributions) of the mean curvatures of a sequence of regular $n$-dimensional manifolds $M_{j}$ convergent to $\partial E$. The manifolds $M_{j}$ are closely related to the level surfaces of the variational mean curvature $H_{E}$ of $E$.
LA - eng
KW - Calculus of Variations; Geometric Measure Theory; Functions of Bounded Variation; Mean Curvature; functions of bounded variation; mean variational mean curvature
UR - http://eudml.org/doc/252366
ER -

References

top
  1. ALLARD, W.K., On the first variation of a varifold. Ann. of Math., 95, 1962, 417-491. Zbl0252.49028MR307015
  2. ALMGREN, F. - TAYLOR, J.E. - WANG, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-488. Zbl0783.35002MR1205983DOI10.1137/0331020
  3. AMBROSIO, L. - FUSCO, N. - PALLARA, D., Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford2000. Zbl0957.49001MR1857292
  4. BAROZZI, E., The curvature of a boundary with finite area. Rend. Mat. Acc. Lincei, s. 9, v. 5, 1994, 149-159. Zbl0809.49038MR1292570
  5. BAROZZI, E. - GONZALEZ, E. - TAMANINI, I., The mean curvature of a set of finite perimeter. Proc A.M.S., 99, 1987, 313-316. MR870791DOI10.2307/2046631
  6. DE GIORGI, E., Frontiere orientate di misura minima. Sem. Mat. Scuola Norm. Sup., Pisa1960-61. 
  7. DE GIORGI, E. - COLOMBINI, F. - PICCININI, L., Frontiere orientate di misura minima e questioni collegate. Scuola Norm. Sup., Pisa1972. Zbl0296.49031MR493669
  8. GIAQUINTA, M., On the Dirichlet problem for surfaces of prescribed mean curvature. Manuscripta Math., 12, 1974, 73-86. Zbl0276.35038MR336532
  9. GILBARG, D. - TRUDINGER, N.S., Elliptic partial differential equations of second order. Springer, Berlin-Heidelberg-New York1977. Zbl1042.35002MR473443
  10. GIUSTI, E., Boundary value problem for nonparametric surfaces of prescribed mean curvature. Ann. Scuola Norm. Sup. Pisa, 3, 1976, 501-548. Zbl0344.35036MR482506
  11. GIUSTI, E., Minimal surfaces and functions of bounded variation. Birkhäuser, Boston-Basel-Stuttgart1984. Zbl0545.49018MR775682
  12. GONZALEZ, E. - MASSARI, U. - TAMANINI, I., Boundaries of prescribed mean curvature. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 197-206. Zbl0824.49037MR1250498
  13. GONZALEZ, E. - MASSARI, U., Variational mean curvatures. Rend. Sem. Mat. Univ. Pol. Torino, 52, 1994, 1-28. Zbl0819.49025MR1289900
  14. MASSARI, U., Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in R n . Arch. Rat. Mech. Analysis, 55, 1974, 357-382. Zbl0305.49047MR355766
  15. MASSARI, U., Frontiere orientate di curvatura media assegnata in L p . Rend. Sem. Mat. Univ. Padova, 53, 1975, 37-52. Zbl0358.49019MR417905
  16. MASSARI, U. - MIRANDA, M., Minimal surfaces of codimension one. Notas de Matematica, North Holland, Amsterdam1984. Zbl0565.49030MR795963
  17. TAMANINI, I., Il problema della capillarità su domini non regolari. Rend. Sem. Mat. Univ. Padova, 56, 1977, 169-191. Zbl0406.76031MR483992

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.