The mean curvature of a Lipschitz continuous manifold
Elisabetta Barozzi; Eduardo Gonzalez; Umberto Massari
- Volume: 14, Issue: 4, page 257-277
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBarozzi, Elisabetta, Gonzalez, Eduardo, and Massari, Umberto. "The mean curvature of a Lipschitz continuous manifold." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.4 (2003): 257-277. <http://eudml.org/doc/252366>.
@article{Barozzi2003,
abstract = {The paper is devoted to the description of some connections between the mean curvature in a distributional sense and the mean curvature in a variational sense for several classes of non-smooth sets. We prove the existence of the mean curvature measure of $\partial E$ by using a technique introduced in [4] and based on the concept of variational mean curvature. More precisely we prove that, under suitable assumptions, the mean curvature measure of $\partial E$ is the weak limit (in the sense of distributions) of the mean curvatures of a sequence of regular $n$-dimensional manifolds $M_\{j\}$ convergent to $\partial E$. The manifolds $M_\{j\}$ are closely related to the level surfaces of the variational mean curvature $H_\{E\}$ of $E$.},
author = {Barozzi, Elisabetta, Gonzalez, Eduardo, Massari, Umberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Calculus of Variations; Geometric Measure Theory; Functions of Bounded Variation; Mean Curvature; functions of bounded variation; mean variational mean curvature},
language = {eng},
month = {12},
number = {4},
pages = {257-277},
publisher = {Accademia Nazionale dei Lincei},
title = {The mean curvature of a Lipschitz continuous manifold},
url = {http://eudml.org/doc/252366},
volume = {14},
year = {2003},
}
TY - JOUR
AU - Barozzi, Elisabetta
AU - Gonzalez, Eduardo
AU - Massari, Umberto
TI - The mean curvature of a Lipschitz continuous manifold
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/12//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 4
SP - 257
EP - 277
AB - The paper is devoted to the description of some connections between the mean curvature in a distributional sense and the mean curvature in a variational sense for several classes of non-smooth sets. We prove the existence of the mean curvature measure of $\partial E$ by using a technique introduced in [4] and based on the concept of variational mean curvature. More precisely we prove that, under suitable assumptions, the mean curvature measure of $\partial E$ is the weak limit (in the sense of distributions) of the mean curvatures of a sequence of regular $n$-dimensional manifolds $M_{j}$ convergent to $\partial E$. The manifolds $M_{j}$ are closely related to the level surfaces of the variational mean curvature $H_{E}$ of $E$.
LA - eng
KW - Calculus of Variations; Geometric Measure Theory; Functions of Bounded Variation; Mean Curvature; functions of bounded variation; mean variational mean curvature
UR - http://eudml.org/doc/252366
ER -
References
top- ALLARD, W.K., On the first variation of a varifold. Ann. of Math., 95, 1962, 417-491. Zbl0252.49028MR307015
- ALMGREN, F. - TAYLOR, J.E. - WANG, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-488. Zbl0783.35002MR1205983DOI10.1137/0331020
- AMBROSIO, L. - FUSCO, N. - PALLARA, D., Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford2000. Zbl0957.49001MR1857292
- BAROZZI, E., The curvature of a boundary with finite area. Rend. Mat. Acc. Lincei, s. 9, v. 5, 1994, 149-159. Zbl0809.49038MR1292570
- BAROZZI, E. - GONZALEZ, E. - TAMANINI, I., The mean curvature of a set of finite perimeter. Proc A.M.S., 99, 1987, 313-316. MR870791DOI10.2307/2046631
- DE GIORGI, E., Frontiere orientate di misura minima. Sem. Mat. Scuola Norm. Sup., Pisa1960-61.
- DE GIORGI, E. - COLOMBINI, F. - PICCININI, L., Frontiere orientate di misura minima e questioni collegate. Scuola Norm. Sup., Pisa1972. Zbl0296.49031MR493669
- GIAQUINTA, M., On the Dirichlet problem for surfaces of prescribed mean curvature. Manuscripta Math., 12, 1974, 73-86. Zbl0276.35038MR336532
- GILBARG, D. - TRUDINGER, N.S., Elliptic partial differential equations of second order. Springer, Berlin-Heidelberg-New York1977. Zbl1042.35002MR473443
- GIUSTI, E., Boundary value problem for nonparametric surfaces of prescribed mean curvature. Ann. Scuola Norm. Sup. Pisa, 3, 1976, 501-548. Zbl0344.35036MR482506
- GIUSTI, E., Minimal surfaces and functions of bounded variation. Birkhäuser, Boston-Basel-Stuttgart1984. Zbl0545.49018MR775682
- GONZALEZ, E. - MASSARI, U. - TAMANINI, I., Boundaries of prescribed mean curvature. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 197-206. Zbl0824.49037MR1250498
- GONZALEZ, E. - MASSARI, U., Variational mean curvatures. Rend. Sem. Mat. Univ. Pol. Torino, 52, 1994, 1-28. Zbl0819.49025MR1289900
- MASSARI, U., Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in . Arch. Rat. Mech. Analysis, 55, 1974, 357-382. Zbl0305.49047MR355766
- MASSARI, U., Frontiere orientate di curvatura media assegnata in . Rend. Sem. Mat. Univ. Padova, 53, 1975, 37-52. Zbl0358.49019MR417905
- MASSARI, U. - MIRANDA, M., Minimal surfaces of codimension one. Notas de Matematica, North Holland, Amsterdam1984. Zbl0565.49030MR795963
- TAMANINI, I., Il problema della capillarità su domini non regolari. Rend. Sem. Mat. Univ. Padova, 56, 1977, 169-191. Zbl0406.76031MR483992
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.