Boundaries of prescribed mean curvature

Eduardo H. A. Gonzales; Umberto Massari; Italo Tamanini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1993)

  • Volume: 4, Issue: 3, page 197-206
  • ISSN: 1120-6330

Abstract

top
The existence of a singular curve in R 2 is proven, whose curvature can be extended to an L 2 function. The curve is the boundary of a two dimensional set, minimizing the length plus the integral over the set of the extension of the curvature. The existence of such a curve was conjectured by E. De Giorgi, during a conference held in Trento in July 1992.

How to cite

top

Gonzales, Eduardo H. A., Massari, Umberto, and Tamanini, Italo. "Boundaries of prescribed mean curvature." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4.3 (1993): 197-206. <http://eudml.org/doc/244125>.

@article{Gonzales1993,
abstract = {The existence of a singular curve in \( \mathbb\{R\}^\{2\} \) is proven, whose curvature can be extended to an \( L^\{2\} \) function. The curve is the boundary of a two dimensional set, minimizing the length plus the integral over the set of the extension of the curvature. The existence of such a curve was conjectured by E. De Giorgi, during a conference held in Trento in July 1992.},
author = {Gonzales, Eduardo H. A., Massari, Umberto, Tamanini, Italo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Calculus of variations; Geometric measure theory; Mean curvature; Singular boundaries of finite measure; singular boundaries of finite measure; mean curvature},
language = {eng},
month = {9},
number = {3},
pages = {197-206},
publisher = {Accademia Nazionale dei Lincei},
title = {Boundaries of prescribed mean curvature},
url = {http://eudml.org/doc/244125},
volume = {4},
year = {1993},
}

TY - JOUR
AU - Gonzales, Eduardo H. A.
AU - Massari, Umberto
AU - Tamanini, Italo
TI - Boundaries of prescribed mean curvature
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1993/9//
PB - Accademia Nazionale dei Lincei
VL - 4
IS - 3
SP - 197
EP - 206
AB - The existence of a singular curve in \( \mathbb{R}^{2} \) is proven, whose curvature can be extended to an \( L^{2} \) function. The curve is the boundary of a two dimensional set, minimizing the length plus the integral over the set of the extension of the curvature. The existence of such a curve was conjectured by E. De Giorgi, during a conference held in Trento in July 1992.
LA - eng
KW - Calculus of variations; Geometric measure theory; Mean curvature; Singular boundaries of finite measure; singular boundaries of finite measure; mean curvature
UR - http://eudml.org/doc/244125
ER -

References

top
  1. BAROZZI, E., The curvature of a boundary with finite area. Preprint Dip. di Mat., Università di Trento, 1993. 
  2. BAROZZI, E. - GONZALEZ, E. H. A. - TAMANINI, I., The mean curvature of a set of finite perimeter. Proc. A.M.S., 99, 1987, 313-316. MR870791DOI10.2307/2046631
  3. BAROZZI, E. - TAMANINI, I., Penalty methods for minimal surfaces with obstacles. Ann. Mat. Pura Appl., 152, (IV), 1988, 139-157. Zbl0824.49035MR980976DOI10.1007/BF01766145
  4. CONGEDO, G. - TAMANINI, I., Note sulla regolarità dei minimi di funzionali del tipo dell'area. Rend. Accad. Naz. XL, vol. XII, fasc. 17, 106, 1988, 239-257. Zbl0674.49031MR985069
  5. GIUSTI, E., Minimal surfaces and functions of bounded variation. Birkhäuser, Boston-Basel-Stuttgart1984. Zbl0545.49018MR775682
  6. MASSARI, U., Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in R n . Arch. Rat. Mech. An., 55, 1974, 357-382. Zbl0305.49047MR355766
  7. MASSARI, U., Frontiere orientate di curvatura media assegnata in L p . Rend. Sem. Mat. Univ. Padova, 53, 1975, 37-52. Zbl0358.49019MR417905
  8. MASSARI, U. - MIRANDA, M., Minimal Surface of Codimension One. North Holland, Amsterdam1984. Zbl0565.49030MR795963
  9. MASSARI, U. - PEPE, L., Successioni convergenti di ipersuperfici di curvatura media assegnata. Rend. Sem. Mat. Univ. Padova, 53, 1975, 53-68. Zbl0358.49020MR420401
  10. TAMANINI, I., Regularity results for almost minimal oriented hypersurfaces in R n . Quaderni del Dipartimento di Matematica, Univ. Lecce, n° 1, 1984. Zbl1191.35007
  11. TAMANINI, I., Interfaces of prescribed mean curvature. In: P. CONCUS, R. FINN (eds.), Variational Methods for Free Surface Interface. Springer-Verlag, New York-Berlin-Heidelberg1987, 91-97. MR872892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.