The Curvature of a Set with Finite Area

Elisabetta Barozzi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1994)

  • Volume: 5, Issue: 2, page 149-159
  • ISSN: 1120-6330

Abstract

top
In a paper, by myself, E. Gonzalez and I. Tamanini (see [2]), it was proven that all sets of finite perimeter do have a non trivial variational property, connected with the mean curvature of their boundaries. In the present article, that variational property is made more precise.

How to cite

top

Barozzi, Elisabetta. "The Curvature of a Set with Finite Area." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.2 (1994): 149-159. <http://eudml.org/doc/244210>.

@article{Barozzi1994,
abstract = {In a paper, by myself, E. Gonzalez and I. Tamanini (see [2]), it was proven that all sets of finite perimeter do have a non trivial variational property, connected with the mean curvature of their boundaries. In the present article, that variational property is made more precise.},
author = {Barozzi, Elisabetta},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Calculus of variations; Geometric measure theory; Mean curvature; Boundaries of finite measure; sets of finite perimeter; mean curvature},
language = {eng},
month = {6},
number = {2},
pages = {149-159},
publisher = {Accademia Nazionale dei Lincei},
title = {The Curvature of a Set with Finite Area},
url = {http://eudml.org/doc/244210},
volume = {5},
year = {1994},
}

TY - JOUR
AU - Barozzi, Elisabetta
TI - The Curvature of a Set with Finite Area
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/6//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 2
SP - 149
EP - 159
AB - In a paper, by myself, E. Gonzalez and I. Tamanini (see [2]), it was proven that all sets of finite perimeter do have a non trivial variational property, connected with the mean curvature of their boundaries. In the present article, that variational property is made more precise.
LA - eng
KW - Calculus of variations; Geometric measure theory; Mean curvature; Boundaries of finite measure; sets of finite perimeter; mean curvature
UR - http://eudml.org/doc/244210
ER -

References

top
  1. ADAMS, R. A., Sobolev Spaces. Academic Press, New York-London-Toronto-Sydney-San Francisco1984. Zbl0314.46030MR450957
  2. BAROZZI, E. - GONZALEZ, E. - TAMANINI, I., The Mean Curvature of a Set of Finite Perimeter. Proc. A.M.S., 99, 1987, 313-316. MR870791DOI10.2307/2046631
  3. GIUSTI, E., Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston-Basel-Stuttgart1984. Zbl0545.49018MR775682
  4. GONZALEZ, E. H. A. - MASSARI, U., Variational mean curvature. Rend. Sem. Mat. Univer. Politecnic. Torino, to appear. Zbl0819.49025MR1289900
  5. GONZALES, E. H. A. - MASSARI, U. - TAMANINI, I., Boundaries of prescribed mean curvature. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 197-206. Zbl0824.49037MR1250498
  6. MASSARI, U., Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in R n . Arch. Rat. Mech. An., 55, 1974, 357-382. Zbl0305.49047MR355766
  7. MASSARI, U., Frontiere orientate di curvatura media assegnata in L p . Rend. Sem. Mat. Univ. Padova, 53, 1975, 37-52. Zbl0358.49019MR417905
  8. MASSARI, U. - MIRANDA, M., Minimal Surfaces of Codimension One. North-Holland, Amsterdam1984. Zbl0565.49030MR795963

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.