On the nodal set of the second eigenfunction of the laplacian in symmetric domains in
- Volume: 11, Issue: 3, page 175-181
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topDamascelli, Lucio. "On the nodal set of the second eigenfunction of the laplacian in symmetric domains in $\mathbb{R}^{N}$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.3 (2000): 175-181. <http://eudml.org/doc/252373>.
@article{Damascelli2000,
abstract = {We present a simple proof of the fact that if $\Omega$ is a bounded domain in $\mathbb\{R\}^\{N\}$, $N \ge 2$, which is convex and symmetric with respect to $k$ orthogonal directions, $1 \le k \le N$, then the nodal sets of the eigenfunctions of the laplacian corresponding to the eigenvalues $\lambda_\{2\}, \cdots ,\lambda_\{k+1\}$ must intersect the boundary. This result was proved by Payne in the case $N = 2$ for the second eigenfunction, and by other authors in the case of convex domains in the plane, again for the second eigenfunction.},
author = {Damascelli, Lucio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Second eigenfunction; Nodal set; Maximum principle; second eigenfunction; Maximum principle.},
language = {eng},
month = {9},
number = {3},
pages = {175-181},
publisher = {Accademia Nazionale dei Lincei},
title = {On the nodal set of the second eigenfunction of the laplacian in symmetric domains in $\mathbb\{R\}^\{N\}$},
url = {http://eudml.org/doc/252373},
volume = {11},
year = {2000},
}
TY - JOUR
AU - Damascelli, Lucio
TI - On the nodal set of the second eigenfunction of the laplacian in symmetric domains in $\mathbb{R}^{N}$
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/9//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - 3
SP - 175
EP - 181
AB - We present a simple proof of the fact that if $\Omega$ is a bounded domain in $\mathbb{R}^{N}$, $N \ge 2$, which is convex and symmetric with respect to $k$ orthogonal directions, $1 \le k \le N$, then the nodal sets of the eigenfunctions of the laplacian corresponding to the eigenvalues $\lambda_{2}, \cdots ,\lambda_{k+1}$ must intersect the boundary. This result was proved by Payne in the case $N = 2$ for the second eigenfunction, and by other authors in the case of convex domains in the plane, again for the second eigenfunction.
LA - eng
KW - Second eigenfunction; Nodal set; Maximum principle; second eigenfunction; Maximum principle.
UR - http://eudml.org/doc/252373
ER -
References
top- Alessandrini, G., Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains. Comm. Math. Helv., 69, 1994, 142-154. Zbl0838.35006MR1259610DOI10.1007/BF02564478
- Berestycki, H. - Nirenberg, L. - Varadhan, S.N.S., The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Comm. Pure Appl. Math., 47, 1994, 47-92. Zbl0806.35129MR1258192DOI10.1002/cpa.3160470105
- Courant, R. - Hilbert, D., Methods of mathematical physics. Vol. 1, Interscience, New York1953. Zbl0051.28802MR65391
- Damascelli, L. - Grossi, M. - Pacella, F., Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle. Annales Inst. H. Poincaré, 16 (5), 1999, 631-652. Zbl0935.35049MR1712564DOI10.1016/S0294-1449(99)80030-4
- Lin, C.S., On the second eigenfunction of the laplacian in . Comm. Math. Phys., 111, 1987, 161-166. Zbl0637.35058MR899848
- Lin, C.S. - Ni, W.M., A counterexample to the nodal domain conjecture and a related semilinear equation. Proc. Amer. Math. Soc., 102 (2), 1988, 271-277. Zbl0652.35085MR920985DOI10.2307/2045874
- Melas, A.D., On the nodal line of the second eigenfunction of the laplacian in . J. Diff. Geom., 35, 1992, 255-263. Zbl0769.58056MR1152231
- Payne, L.E., Isoperimetric inequalities and applications. SIAM Review, 9, 1967, 453-488. Zbl0154.12602MR218975
- Payne, L.E., On two conjectures in the fixed membrane eigenvalue problem. Z. Angew. Math. Phys., 24, 1973, 721-729. Zbl0272.35058MR333487
- Pólya, G. - Szegö, G., Isoperimetric Inequalities in Mathematical Physics. Annals of Math. Studies, 27, Princeton University Press, Princeton, NJ1951. Zbl0044.38301
- Yau, S.T., Problem section, seminar on differential geometry. Annals of Math. Studies, 102, Princeton University Press, Princeton, NJ1982, 669-706. Zbl0471.00020MR645762
- Zhang, Liqun, On the multiplicity of the second eigenvalue of Laplacian in . Comm. Anal. Geom., 3, 1995, 273-296. Zbl0849.35086MR1362653
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.