# Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue

ESAIM: Control, Optimisation and Calculus of Variations (2005)

- Volume: 11, Issue: 4, page 508-521
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topMugnai, Dimitri. "Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue." ESAIM: Control, Optimisation and Calculus of Variations 11.4 (2005): 508-521. <http://eudml.org/doc/245432>.

@article{Mugnai2005,

abstract = {We give the precise behaviour of some solutions of a nonlinear elliptic B.V.P. in a bounded domain when a parameter approaches an eigenvalue of the principal part. If the nonlinearity has some regularity and the domain is for example convex, we also prove a nonlinear version of Courant’s Nodal theorem.},

author = {Mugnai, Dimitri},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {eigenvalues; $L^\infty -H_0^1$ estimate; nodal lines; symmetries; Eigenvalues; estimates},

language = {eng},

number = {4},

pages = {508-521},

publisher = {EDP-Sciences},

title = {Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue},

url = {http://eudml.org/doc/245432},

volume = {11},

year = {2005},

}

TY - JOUR

AU - Mugnai, Dimitri

TI - Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2005

PB - EDP-Sciences

VL - 11

IS - 4

SP - 508

EP - 521

AB - We give the precise behaviour of some solutions of a nonlinear elliptic B.V.P. in a bounded domain when a parameter approaches an eigenvalue of the principal part. If the nonlinearity has some regularity and the domain is for example convex, we also prove a nonlinear version of Courant’s Nodal theorem.

LA - eng

KW - eigenvalues; $L^\infty -H_0^1$ estimate; nodal lines; symmetries; Eigenvalues; estimates

UR - http://eudml.org/doc/245432

ER -

## References

top- [1] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973) 349–381. Zbl0273.49063
- [2] M. Balabane, J. Dolbeault and H. Ounaies, Nodal solutions for a sublinear elliptic equation. Nonlinear Analysis TMA 52 (2003) 219–237. Zbl1087.35033
- [3] A. Bahri and P.L. Lions, Solutions of superlinear elliptic equations and their Morse indices. Comm. Pure Appl. Math. 45 (1992) 1205–1215. Zbl0801.35026
- [4] T. Bartsch, K.C. Chang and Z.Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems. Math. Z. 233 (2000) 655–677. Zbl0946.35023
- [5] T. Bartsch, Z. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equation. Comm. Partial Differ. Equ. 29 (2004) 25–42. Zbl1140.35410
- [6] T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations. Topol. Methods Nonlinear Anal. 22 (2003) 1–14. Zbl1094.35041
- [7] T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005) 259–281. Zbl1114.35068
- [8] V. Benci and D. Fortunato, A remark on the nodal regions of the solutions of some superlinear elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 123–128. Zbl0686.35043
- [9] H. Brezis and T. Kato, Remarks on the Scrödinger operator with singular complex potentials. J. Pure Appl. Math. 33 (1980) 137–151. Zbl0408.35025
- [10] A. Castro, J. Cossio and J.M. Neuberger, A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems. Electron. J. Differ. Equ. 2 (1998) 18. Zbl0901.35028
- [11] L. Damascelli, On the nodal set of the second eigenfunction of the Laplacian in symmetric domains in ${\mathbb{R}}^{N}$. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11 (2000) 175–181. Zbl1042.35036
- [12] L. Damascelli, M. Grossi and F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle. Ann. Inst. H. Poincaré. Anal. Non Linéaire 16 (1999) 631–652. Zbl0935.35049
- [13] L. Damascelli and F. Pacella, Monotonicity and symmetry of solutions of $p$-Laplace equations, $1lt;plt;2$, via the moving plane method. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998) 689–707. Zbl0930.35070
- [14] L. Damascelli and F. Pacella, Monotonicity and symmetry results for $p$-Laplace equations and applications. Adv. Differential Equations 5 (2000) 1179–1200, Zbl1002.35045
- [15] P. Drábek and S.B. Robinson, On the Generalization of the Courant Nodal Domain Theorem. J. Differ. Equ. 181 (2002) 58–71. Zbl1163.35449
- [16] M. Grossi, F. Pacella and S.L. Yadava, Symmetry results for perturbed problems and related questions. Topol. Methods Nonlinear Anal. (to appear). Zbl1274.35021
- [17] S.J. Li and M. Willem, Applications of local linking to critical point theory. J. Math. Anal. Appl. 189 (1995) 6–32. Zbl0820.58012
- [18] J. Moser, A new proof of De Giorgi’s theorem. Comm. Pure Appl. Math. 13 (1960) 457–468. Zbl0111.09301
- [19] D. Mugnai, Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem. Nonlinear Differ. Equ. Appl. 11 (2004) 379–391. Zbl1102.35040
- [20] F. Pacella, Symmetry results for solutions of semilinear elliptic equations with convex nonlinearities. J. Funct. Anal. 192 (2002) 271–282 Zbl1014.35032
- [21] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence, RI (1986). Zbl0609.58002MR845785
- [22] M. Struwe, Variational Methods. Applications to nonlinear partial differential equations and Hamiltonian systems. Springer-Verlag (1990). Zbl0746.49010MR1078018
- [23] Z.Q. Wang, On a superlinear elliptic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991) 43–57. Zbl0733.35043

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.