Quasilinear hyperbolic equations with hysteresis

Augusto Visintin

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 3-4, page 235-247
  • ISSN: 1120-6330

Abstract

top
Hysteresis operators are illustrated, and a weak formulation is studied for an initial- and boundary-value problem associated to the equation 2 / t 2 u + F u + A u = f ; here F is a (possibly discontinuous) hysteresis operator, A is a second order elliptic operator, f is a known function. Problems of this sort arise in plasticity, ferromagnetism, ferroelectricity, and so on. In particular an existence result is outlined.

How to cite

top

Visintin, Augusto. "Quasilinear hyperbolic equations with hysteresis." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 235-247. <http://eudml.org/doc/252398>.

@article{Visintin2004,
abstract = {Hysteresis operators are illustrated, and a weak formulation is studied for an initial- and boundary-value problem associated to the equation $(\partial ^\{2\} / \partial t^\{2\}) \left[ u + \mathcal\{F\} (u) \right] + A u = f$; here $\mathcal\{F\}$ is a (possibly discontinuous) hysteresis operator, $A$ is a second order elliptic operator, $f$ is a known function. Problems of this sort arise in plasticity, ferromagnetism, ferroelectricity, and so on. In particular an existence result is outlined.},
author = {Visintin, Augusto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hysteresis; Hysteresis operator; Quasilinear hyperbolic equations; Existence of weak solutions},
language = {eng},
month = {12},
number = {3-4},
pages = {235-247},
publisher = {Accademia Nazionale dei Lincei},
title = {Quasilinear hyperbolic equations with hysteresis},
url = {http://eudml.org/doc/252398},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Visintin, Augusto
TI - Quasilinear hyperbolic equations with hysteresis
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 235
EP - 247
AB - Hysteresis operators are illustrated, and a weak formulation is studied for an initial- and boundary-value problem associated to the equation $(\partial ^{2} / \partial t^{2}) \left[ u + \mathcal{F} (u) \right] + A u = f$; here $\mathcal{F}$ is a (possibly discontinuous) hysteresis operator, $A$ is a second order elliptic operator, $f$ is a known function. Problems of this sort arise in plasticity, ferromagnetism, ferroelectricity, and so on. In particular an existence result is outlined.
LA - eng
KW - Hysteresis; Hysteresis operator; Quasilinear hyperbolic equations; Existence of weak solutions
UR - http://eudml.org/doc/252398
ER -

References

top
  1. BERTOTTI, G., Hysteresis in Magnetism. Academic Press, Boston1998. 
  2. BOUC, R., Solution périodique de l’équation de la ferrorésonance avec hystérésis. C.R. Acad. Sci. Paris, Série A, 263, 1966, 497-499. Zbl0152.42103MR201106
  3. BROKATE et al, M., Phase Transitions and Hysteresis. Lecture Notes in Mathematics, vol. 1584 (A. Visintin, ed.). Springer-Verlag, Berlin1994. Zbl0801.00028MR1321830DOI10.1007/BFb0073394
  4. BROKATE, M. - SPREKELS, J., Hysteresis and Phase Transitions. Springer, Berlin1996. Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8
  5. DAMLAMIAN, A. - VISINTIN, A., Une généralisation vectorielle du modèle de Preisach pour l’hystérésis. C.R. Ac. Sci. Paris I, 297, 1983, 437-440. Zbl0546.35068MR732853
  6. DUHEM, P., The evolution of mechanics. Sijthoff and Noordhoff, Alphen aan den Rijn, 1980. Original edition: L’évolution de la méchanique. Joanin, Paris1903. Zbl0424.01002
  7. ISHLINSKĬ, A.Y., Some applications of statistical methods to describing deformations of bodies. Izv. Akad. Nauk S.S.S.R., Techn. Ser., 9, 1944, 580-590 (in Russian). 
  8. KRASNOSEL'SKIĬ, M.A. - POKROVSKIĬ, A.V., Systems with Hysteresis. Springer, Berlin1989 (Russian ed. Nauka, Moscow1983). MR987431DOI10.1007/978-3-642-61302-9
  9. KREJČÍ, P., Convexity, Hysteresis and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo1997. Zbl1187.35003
  10. MAYERGOYZ, I.D., Vector Preisach model of hysteresis. J. Appl. Phys., 63, 1988, 2995-3000. Zbl1142.34028
  11. MAYERGOYZ, I.D., Mathematical Models of Hysteresis. Springer, New York1991. Zbl0723.73003MR1083150DOI10.2172/6911694
  12. PRANDTL, L., Spannungsverteilung in plastischen Körpern. In: C.B. BIEZENO - J.M. BURGERS (eds.), Proceedings of the first International Congress for Applied Mechanics (Delft, 22-26 April 1924). J. Waltman Jr., Delft1925, 43-54. JFM51.0649.02
  13. PRANDTL, L., Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech., 8, 1928, 85-106. JFM54.0847.04
  14. PREISACH, F., Über die magnetische Nachwirkung. Z. Physik, 94, 1935, 277-302. 
  15. VISINTIN, A., Models of Hysteresis. Longman, Harlow1993. Zbl0785.00016MR1235109
  16. VISINTIN, A., Differential Models of Hysteresis. Springer, Berlin1994. Zbl0820.35004MR1329094
  17. VISINTIN, A., Six talks on hysteresis. C.R.M. Proceedings and Lecture Notes, 13, 1998, 207-236. Zbl0918.35067MR1619117
  18. VISINTIN, A., Quasi-linear hyperbolic equations with hysteresis. Ann. Inst. H. Poincaré, Nonlinear Analysis, 19, 2002, 451-476. Zbl1027.35076MR1912263DOI10.1016/S0294-1449(01)00086-5
  19. VISINTIN, A., Maxwell's equations with vector hysteresis. Arch. Rat. Mech. Anal., in press. Zbl1145.78003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.