Quasilinear hyperbolic equations with hysteresis
- Volume: 15, Issue: 3-4, page 235-247
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topVisintin, Augusto. "Quasilinear hyperbolic equations with hysteresis." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 235-247. <http://eudml.org/doc/252398>.
@article{Visintin2004,
abstract = {Hysteresis operators are illustrated, and a weak formulation is studied for an initial- and boundary-value problem associated to the equation $(\partial ^\{2\} / \partial t^\{2\}) \left[ u + \mathcal\{F\} (u) \right] + A u = f$; here $\mathcal\{F\}$ is a (possibly discontinuous) hysteresis operator, $A$ is a second order elliptic operator, $f$ is a known function. Problems of this sort arise in plasticity, ferromagnetism, ferroelectricity, and so on. In particular an existence result is outlined.},
author = {Visintin, Augusto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hysteresis; Hysteresis operator; Quasilinear hyperbolic equations; Existence of weak solutions},
language = {eng},
month = {12},
number = {3-4},
pages = {235-247},
publisher = {Accademia Nazionale dei Lincei},
title = {Quasilinear hyperbolic equations with hysteresis},
url = {http://eudml.org/doc/252398},
volume = {15},
year = {2004},
}
TY - JOUR
AU - Visintin, Augusto
TI - Quasilinear hyperbolic equations with hysteresis
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 235
EP - 247
AB - Hysteresis operators are illustrated, and a weak formulation is studied for an initial- and boundary-value problem associated to the equation $(\partial ^{2} / \partial t^{2}) \left[ u + \mathcal{F} (u) \right] + A u = f$; here $\mathcal{F}$ is a (possibly discontinuous) hysteresis operator, $A$ is a second order elliptic operator, $f$ is a known function. Problems of this sort arise in plasticity, ferromagnetism, ferroelectricity, and so on. In particular an existence result is outlined.
LA - eng
KW - Hysteresis; Hysteresis operator; Quasilinear hyperbolic equations; Existence of weak solutions
UR - http://eudml.org/doc/252398
ER -
References
top- BERTOTTI, G., Hysteresis in Magnetism. Academic Press, Boston1998.
- BOUC, R., Solution périodique de l’équation de la ferrorésonance avec hystérésis. C.R. Acad. Sci. Paris, Série A, 263, 1966, 497-499. Zbl0152.42103MR201106
- BROKATE et al, M., Phase Transitions and Hysteresis. Lecture Notes in Mathematics, vol. 1584 (A. Visintin, ed.). Springer-Verlag, Berlin1994. Zbl0801.00028MR1321830DOI10.1007/BFb0073394
- BROKATE, M. - SPREKELS, J., Hysteresis and Phase Transitions. Springer, Berlin1996. Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8
- DAMLAMIAN, A. - VISINTIN, A., Une généralisation vectorielle du modèle de Preisach pour l’hystérésis. C.R. Ac. Sci. Paris I, 297, 1983, 437-440. Zbl0546.35068MR732853
- DUHEM, P., The evolution of mechanics. Sijthoff and Noordhoff, Alphen aan den Rijn, 1980. Original edition: L’évolution de la méchanique. Joanin, Paris1903. Zbl0424.01002
- ISHLINSKĬ, A.Y., Some applications of statistical methods to describing deformations of bodies. Izv. Akad. Nauk S.S.S.R., Techn. Ser., 9, 1944, 580-590 (in Russian).
- KRASNOSEL'SKIĬ, M.A. - POKROVSKIĬ, A.V., Systems with Hysteresis. Springer, Berlin1989 (Russian ed. Nauka, Moscow1983). MR987431DOI10.1007/978-3-642-61302-9
- KREJČÍ, P., Convexity, Hysteresis and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo1997. Zbl1187.35003
- MAYERGOYZ, I.D., Vector Preisach model of hysteresis. J. Appl. Phys., 63, 1988, 2995-3000. Zbl1142.34028
- MAYERGOYZ, I.D., Mathematical Models of Hysteresis. Springer, New York1991. Zbl0723.73003MR1083150DOI10.2172/6911694
- PRANDTL, L., Spannungsverteilung in plastischen Körpern. In: C.B. BIEZENO - J.M. BURGERS (eds.), Proceedings of the first International Congress for Applied Mechanics (Delft, 22-26 April 1924). J. Waltman Jr., Delft1925, 43-54. JFM51.0649.02
- PRANDTL, L., Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech., 8, 1928, 85-106. JFM54.0847.04
- PREISACH, F., Über die magnetische Nachwirkung. Z. Physik, 94, 1935, 277-302.
- VISINTIN, A., Models of Hysteresis. Longman, Harlow1993. Zbl0785.00016MR1235109
- VISINTIN, A., Differential Models of Hysteresis. Springer, Berlin1994. Zbl0820.35004MR1329094
- VISINTIN, A., Six talks on hysteresis. C.R.M. Proceedings and Lecture Notes, 13, 1998, 207-236. Zbl0918.35067MR1619117
- VISINTIN, A., Quasi-linear hyperbolic equations with hysteresis. Ann. Inst. H. Poincaré, Nonlinear Analysis, 19, 2002, 451-476. Zbl1027.35076MR1912263DOI10.1016/S0294-1449(01)00086-5
- VISINTIN, A., Maxwell's equations with vector hysteresis. Arch. Rat. Mech. Anal., in press. Zbl1145.78003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.