On the existence of infinitely many solutions for a class of semilinear elliptic equations in
Francesca Alessio; Paolo Caldiroli; Piero Montecchiari
- Volume: 9, Issue: 3, page 157-165
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topAlessio, Francesca, Caldiroli, Paolo, and Montecchiari, Piero. "On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{N} \)." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.3 (1998): 157-165. <http://eudml.org/doc/252422>.
@article{Alessio1998,
abstract = {We show, by variational methods, that there exists a set \( \mathcal\{A\} \) open and dense in \( \{a \in L^\{\infty\} ( \mathbb\{R\}^\{N\}) : a \ge 0\} \) such that if \( a \in \mathcal\{A\} \) then the problem \( - \triangle u + u = a(x) |u|^\{p-1\} u, u \in H^\{1\}(\mathcal\{R\}^\{N\}) \), with \( p \) subcritical (or more general nonlinearities), admits infinitely many solutions.},
author = {Alessio, Francesca, Caldiroli, Paolo, Montecchiari, Piero},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Semilinear elliptic equations; Locally compact case; Minimax arguments; Multiplicity of solutions; Genericity; locally compact case; minimax arguments},
language = {eng},
month = {9},
number = {3},
pages = {157-165},
publisher = {Accademia Nazionale dei Lincei},
title = {On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb\{R\}^\{N\} \)},
url = {http://eudml.org/doc/252422},
volume = {9},
year = {1998},
}
TY - JOUR
AU - Alessio, Francesca
AU - Caldiroli, Paolo
AU - Montecchiari, Piero
TI - On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{N} \)
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/9//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 3
SP - 157
EP - 165
AB - We show, by variational methods, that there exists a set \( \mathcal{A} \) open and dense in \( {a \in L^{\infty} ( \mathbb{R}^{N}) : a \ge 0} \) such that if \( a \in \mathcal{A} \) then the problem \( - \triangle u + u = a(x) |u|^{p-1} u, u \in H^{1}(\mathcal{R}^{N}) \), with \( p \) subcritical (or more general nonlinearities), admits infinitely many solutions.
LA - eng
KW - Semilinear elliptic equations; Locally compact case; Minimax arguments; Multiplicity of solutions; Genericity; locally compact case; minimax arguments
UR - http://eudml.org/doc/252422
ER -
References
top- Alama, S. - Li, Y. Y., Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Diff. Eq., 96, 1992, 88-115. Zbl0766.35009MR1153310DOI10.1016/0022-0396(92)90145-D
- Alessio, F. - Caldiroli, P. - Montecchiari, P., Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in . Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4), to appear. Zbl0931.35047MR1831991
- Ambrosetti, A. - Badiale, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. C.R. Acad. Sci. Paris, 323, s. I, 1996, 753-758; Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. Zbl0887.34042MR1416171DOI10.1016/S0294-1449(97)89300-6
- Ambrosetti, A. - Badiale, M. - Cingolani, S., Semiclassical states of nonlinear Schrödinger equation. Arch. Rat. Mech. Anal., 140, 1997, 285-300. Zbl0896.35042MR1486895DOI10.1007/s002050050067
- Angenent, S., The Shadowing Lemma for Elliptic PDE. In: S. N. Chow - J. K. Hale (eds.), Dynamics of Infinite Dimensional Systems. NATO ASI Series, F37, Springer-Verlag, 1987. Zbl0653.35030MR921893
- Bahri, A. - Li, Y. Y., On a Min-Max Procedure for the Existence of a Positive Solution for Certain Scalar Field Equation in . Rev. Mat. Iberoamericana, 6, 1990, 1-15. Zbl0731.35036MR1086148DOI10.4171/RMI/92
- Bahri, A. - Lions, P. L., On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. H. Poincaré, Anal. non linéaire, 14, 1997, 365-413. Zbl0883.35045MR1450954DOI10.1016/S0294-1449(97)80142-4
- Berestycki, H. - Lions, P. L., Nonlinear scalar field equations. Arch. Rat. Mech. Anal., 82, 1983, 313-345. Zbl0533.35029MR695535DOI10.1007/BF00250555
- Cao, D. M., Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in . Nonlinear Anal. T.M.A., 15, 1990, 1045-1052. Zbl0729.35049MR1082280DOI10.1016/0362-546X(90)90152-7
- Cao, D. M., Multiple solutions of a semilinear elliptic equation in . Ann. Inst. H. Poincaré, Anal. non linéaire, 10, 1993, 593-604. Zbl0797.35039MR1253603
- Cao, D. M. - Noussair, E. S., Multiplicity of positive and nodal solutions for nonlinear elliptic problems in . Ann. Inst. H. Poincaré, Anal. non linéaire, 13, 1996, 567-588. Zbl0859.35032MR1409663
- Cingolani, S., On a perturbed semilinear elliptic equation in . Comm. Appl. Anal., to appear. Zbl0922.35051MR1669769
- Coti Zelati, V. - Rabinowitz, P. H., Homoclinic type solutions for a semilinear elliptic PDE on . Comm. Pure Appl. Math., 45, 1992, 1217-1269. Zbl0785.35029MR1181725DOI10.1002/cpa.3160451002
- Del Pino, M. - Felmer, P. L., Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. Zbl0901.35023
- Ding, W. Y. - Ni, W. M., On the existence of a positive entire solution of a semilinear elliptic equation. Arch. Rat. Mech. Anal., 91, 1986, 283-308. Zbl0616.35029MR807816DOI10.1007/BF00282336
- Esteban, M. J. - Lions, P. L., Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh, 93, 1982, 1-14. Zbl0506.35035MR688279DOI10.1017/S0308210500031607
- Gui, C., Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods. Comm. in PDE, 21, 1996, 787-820. Zbl0857.35116MR1391524DOI10.1080/03605309608821208
- Li, Y., Remarks on a semilinear elliptic equations on . J. Diff. Eq., 74, 1988, 34-39. Zbl0662.35038MR949624DOI10.1016/0022-0396(88)90017-4
- Li, Y. Y., Prescribing scalar curvature on , and related problems. J. Funct. Anal., 118, 1991, 43-118. Zbl0790.53040MR1245597DOI10.1006/jfan.1993.1138
- Li, Y. Y., On a singularly perturbed elliptic equation. Adv. Diff. Eq., 2, 1997, 955-980. Zbl1023.35500MR1606351
- Lions, P. L., The concentration-compactness principle in the calculus of variations: the locally compact case. Part I, II. Ann. Inst. H. Poincaré, Anal. non linéaire, 1, 1984, 109-145; 223-283. Zbl0704.49004
- Montecchiari, P., Multiplicity results for a class of Semilinear Elliptic Equations on . Rend. Sem. Mat. Univ. Padova, 95, 1996, 217-252. Zbl0866.35043MR1405365
- Musina, R., Multiple positive solutions of the equation in . Top. Meth. Nonlinear Anal., 7, 1996, 171-185. Zbl0909.35042MR1422010
- Rabinowitz, P. H., A note on a semilinear elliptic equation on . In: A. Ambrosetti - A. Marino (eds.), Nonlinear Analysis, a tribute in honour of Giovanni Prodi. Quaderni della Scuola Normale Superiore, Pisa1991. Zbl0836.35045MR1205391
- Rabinowitz, P. H., On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys., 43, 1992, 270-291. Zbl0763.35087MR1162728DOI10.1007/BF00946631
- Séré, E., Looking for the Bernoulli shift. Ann. Inst. H. Poincaré, Anal. non linéaire, 10, 1993, 561-590. Zbl0803.58013MR1249107
- Strauss, W. A., Existence of solitary waves in higher dimensions. Comm. Math. Phys., 55, 1979, 149-162. Zbl0356.35028MR454365
- Stuart, C. A., Bifurcation in for a semilinear elliptic equation. Proc. London Math. Soc., (3), 57, 1988, 511-541. Zbl0673.35005MR960098DOI10.1112/plms/s3-57.3.511
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.