Multiplicity of positive and nodal solutions for nonlinear elliptic problems in
Annales de l'I.H.P. Analyse non linéaire (1996)
- Volume: 13, Issue: 5, page 567-588
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 253-294. Zbl0649.35033MR929280
- [2] A. Bahri and Y.Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equation in RN ., Revista Mat. Iberoamericana, Vol. 6, 1990, pp. 1-15. Zbl0731.35036MR1086148
- [3] A. Bahri and P.L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, preprint. Zbl0883.35045
- [4] V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rat. Mech. Anal., Vol. 114, 1991, pp. 79-93. Zbl0727.35055MR1088278
- [5] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., Vol. 88, 1983, pp. 486-490. Zbl0526.46037MR699419
- [6] D.M. Cao, Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in RN., Nonlinear Anal. TMA., Vol. 15, 1990, pp. 1045-1052. Zbl0729.35049MR1082280
- [7] G. Cerami and D. Passaseo, Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with "rich" topology, Nonlinear Anal. TMA., Vol. 18, 1992, pp. 109-119. Zbl0810.35024MR1146601
- [8] J.M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sc. Paris, I, Vol. 299, 1984, pp. 209-212. Zbl0569.35032MR762722
- [9] I. Ekeland, On the variational principle, J. Math. Anal. Appl., Vol. 17, 1974, pp. 324-353. Zbl0286.49015MR346619
- [10] M.K. Kwong, Uniqueness of positive solutions of Δu - u + up = 0 in RN., Arch. Rat. Mech. Anal., Vol. 105, 1989, pp. 243-266. Zbl0676.35032MR969899
- [11] Yi Li, Remarks on a semilinear elliptic equation on RN., J. Diff. Equats., Vol. 74, 1988, pp. 34-49. Zbl0662.35038MR949624
- [12] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 1, 1984, pp. 102-145 and 223-283. Zbl0704.49004MR778974
- [13] P.L. Lions, On positive solutions of semilinear elliptic equations in unbounded domains, in "Nonlinear Diffusion Equations and their equilibrium States", Springer, New York, 1988. Zbl0685.35039MR956083
- [14] M.V. Marchi and F. Pacella, On the existence of nodal solutions of the equation -Δu = |u|2*-2u with Dirichlet boundary conditions, Differential and Integral Equations, Vol. 6, 1993, pp. 849-862. Zbl0782.35022MR1222305
- [15] D. Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., Vol. 65, 1989, pp. 147-166. Zbl0701.35068MR1011429
- [16] G. Tarantello, On nonhomogenous elliptic equations involving critical Sobolev exponent, Ann. I.H.P. Anal. non linéaire, Vol. 9, 1992, pp. 281-304. Zbl0785.35046MR1168304
- [17] X.P. Zhu, Multiple entire solutions of semilinear elliptic equation, Nonlinear Anal. TMA., Vol. 12, 1988, pp. 1297-1316. Zbl0671.35023MR969507
Citations in EuDML Documents
top- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, On the existence of infinitely many solutions for a class of semilinear elliptic equations in
- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in
- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Infinitely many solutions for a class of semilinear elliptic equations in