Multiplicity of positive and nodal solutions for nonlinear elliptic problems in N

Daomin Cao; Ezzat S. Noussair

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 5, page 567-588
  • ISSN: 0294-1449

How to cite

top

Cao, Daomin, and Noussair, Ezzat S.. "Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb {R}^N$." Annales de l'I.H.P. Analyse non linéaire 13.5 (1996): 567-588. <http://eudml.org/doc/78393>.

@article{Cao1996,
author = {Cao, Daomin, Noussair, Ezzat S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {positive solutions; nodal solutions; concentration-compactness principle},
language = {eng},
number = {5},
pages = {567-588},
publisher = {Gauthier-Villars},
title = {Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/78393},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Cao, Daomin
AU - Noussair, Ezzat S.
TI - Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb {R}^N$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 5
SP - 567
EP - 588
LA - eng
KW - positive solutions; nodal solutions; concentration-compactness principle
UR - http://eudml.org/doc/78393
ER -

References

top
  1. [1] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 253-294. Zbl0649.35033MR929280
  2. [2] A. Bahri and Y.Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equation in RN ., Revista Mat. Iberoamericana, Vol. 6, 1990, pp. 1-15. Zbl0731.35036MR1086148
  3. [3] A. Bahri and P.L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, preprint. Zbl0883.35045
  4. [4] V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rat. Mech. Anal., Vol. 114, 1991, pp. 79-93. Zbl0727.35055MR1088278
  5. [5] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., Vol. 88, 1983, pp. 486-490. Zbl0526.46037MR699419
  6. [6] D.M. Cao, Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in RN., Nonlinear Anal. TMA., Vol. 15, 1990, pp. 1045-1052. Zbl0729.35049MR1082280
  7. [7] G. Cerami and D. Passaseo, Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with "rich" topology, Nonlinear Anal. TMA., Vol. 18, 1992, pp. 109-119. Zbl0810.35024MR1146601
  8. [8] J.M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sc. Paris, I, Vol. 299, 1984, pp. 209-212. Zbl0569.35032MR762722
  9. [9] I. Ekeland, On the variational principle, J. Math. Anal. Appl., Vol. 17, 1974, pp. 324-353. Zbl0286.49015MR346619
  10. [10] M.K. Kwong, Uniqueness of positive solutions of Δu - u + up = 0 in RN., Arch. Rat. Mech. Anal., Vol. 105, 1989, pp. 243-266. Zbl0676.35032MR969899
  11. [11] Yi Li, Remarks on a semilinear elliptic equation on RN., J. Diff. Equats., Vol. 74, 1988, pp. 34-49. Zbl0662.35038MR949624
  12. [12] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 1, 1984, pp. 102-145 and 223-283. Zbl0704.49004MR778974
  13. [13] P.L. Lions, On positive solutions of semilinear elliptic equations in unbounded domains, in "Nonlinear Diffusion Equations and their equilibrium States", Springer, New York, 1988. Zbl0685.35039MR956083
  14. [14] M.V. Marchi and F. Pacella, On the existence of nodal solutions of the equation -Δu = |u|2*-2u with Dirichlet boundary conditions, Differential and Integral Equations, Vol. 6, 1993, pp. 849-862. Zbl0782.35022MR1222305
  15. [15] D. Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., Vol. 65, 1989, pp. 147-166. Zbl0701.35068MR1011429
  16. [16] G. Tarantello, On nonhomogenous elliptic equations involving critical Sobolev exponent, Ann. I.H.P. Anal. non linéaire, Vol. 9, 1992, pp. 281-304. Zbl0785.35046MR1168304
  17. [17] X.P. Zhu, Multiple entire solutions of semilinear elliptic equation, Nonlinear Anal. TMA., Vol. 12, 1988, pp. 1297-1316. Zbl0671.35023MR969507

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.