Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in N

Francesca Alessio; Paolo Caldiroli; Piero Montecchiari

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 27, Issue: 1, page 47-68
  • ISSN: 0391-173X

How to cite

top

Alessio, Francesca, Caldiroli, Paolo, and Montecchiari, Piero. "Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in $\mathbb {R}^N$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1998): 47-68. <http://eudml.org/doc/84354>.

@article{Alessio1998,
author = {Alessio, Francesca, Caldiroli, Paolo, Montecchiari, Piero},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {variational methods; subcritical; infinitely many solutions},
language = {eng},
number = {1},
pages = {47-68},
publisher = {Scuola normale superiore},
title = {Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/84354},
volume = {27},
year = {1998},
}

TY - JOUR
AU - Alessio, Francesca
AU - Caldiroli, Paolo
AU - Montecchiari, Piero
TI - Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in $\mathbb {R}^N$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 47
EP - 68
LA - eng
KW - variational methods; subcritical; infinitely many solutions
UR - http://eudml.org/doc/84354
ER -

References

top
  1. [1] S. Alama - Y.Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations96 (1992), 88-115. Zbl0766.35009MR1153310
  2. [2] F. Alessio - P. Montecchiari, Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zbl0919.34044MR1668564
  3. [3] F. Alessio - P. Caldiroli - P. Montecchiari, Genericity of the multibump dynamics for almost periodic Duffing-like systems, Proc. Roy. Soc. Edinburgh Sect. A, to appear. Zbl0941.34032MR1719214
  4. [4] A. Ambrosetti - M. Badiale, Homoclinics: Poincarè-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998), 232-252. Zbl1004.37043MR1614571
  5. [5] A. Ambrosetti - M. Badiale - S. Cingolani, Semiclassical states of nonlinear Schrodinger equation, Arch. Rational Mech. Anal.140 (1997), 285-300. Zbl0896.35042MR1486895
  6. [6] S. Angenent, The Shadowing Lemma for Elliptic PDE, Dynamics of Infinite Dimensional Systems (S.N. Chow and J.K. Hale eds.) F37 (1987), 6-22. Zbl0653.35030MR921893
  7. [7] A. Bahri - Y.Y. Li, On a AIin-Max Procedure for the Existence of a Positive Solution for Certain Scalar Field Equation in Rn, Rev. Mat. Iberoamericana6 (1990), 1-15. Zbl0731.35036MR1086148
  8. [8] A. Bahri - P.L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (1997), 365-413. Zbl0883.35045MR1450954
  9. [9] H. Berestycki - P.L. Lions, Nonlinear scalar field equations, Arch. Rational Mech. Anal.82 (1983), 313-345. Zbl0556.35046MR695535
  10. [10] A.S. Besicovitch, "Almost Periodic Functions", Dover Pubblications Inc. (1954). Zbl0065.07102MR68029
  11. [11] D.M. Cao, Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in Rn, Nonlinear Anal. 15 (1990), 1045-1052. Zbl0729.35049MR1082280
  12. [12] D.M. Cao, Multiple solutions of a semilinear elliptic equation in Rn, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993), 593-604. Zbl0797.35039MR1253603
  13. [13] D.M. Cao - E.S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in Rn, Ann. Inst. H. Poincaré Anal. Non Linéaire13 (1996), 567-588. Zbl0859.35032MR1409663
  14. [14] V. Coti Zelati - I. Ekeland - E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann.288 (1990), 133-160. Zbl0731.34050MR1070929
  15. [15] V. Coti Zelati - P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math.45 (1992), 1217-1269. Zbl0785.35029MR1181725
  16. [16] M. Del Pino - P.L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998), 127-149. Zbl0901.35023MR1614646
  17. [17] W.Y. Ding - W.M. Ni, On the existence of a positive entire solution of a semilinear elliptic equation, Arch. Rational Mech. Anal.91 (1986), 283-308. Zbl0616.35029MR807816
  18. [18] M.J. Esteban - P.L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect.A93 (1982), 1-14. Zbl0506.35035MR688279
  19. [19] C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods, Comm. Partial Differential Equations21 (1996), 787-820. Zbl0857.35116MR1391524
  20. [20] Y. Li, Remarks on a semilinear elliptic equation on RN, J. Differential Equations74 (1988), 34-39. Zbl0662.35038MR949624
  21. [21] Y.Y. Li, Prescribing scalar curvature on S3,S4 and related problems, J. Funct. Anal.118 (1993),43-118. Zbl0790.53040MR1245597
  22. [22] Y.Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations2 (1997), 955-980. Zbl1023.35500MR1606351
  23. [23] P.L. Lions, The concentration-compactness principle in the calculus of variations: the locally compact case, Part I and II, Ann. Inst. H. Poincaré Anal. Non Linéaire1 (1984), 109-145 and 223-283. Zbl0704.49004
  24. [24] P. Montecchiari, Multiplicity results for a class of Semilinear Elliptic Equations on Rm, Rend. Sem. Mat. Univ. Padova95 (1996), 1-36. Zbl0866.35043MR1405365
  25. [25] R. Musina, Multiple positive solutions of a scalar field equation in Rn, Topol. Methods Nonlinear Anal.7 (1996), 171-185. Zbl0909.35042MR1422010
  26. [26] W.M. Ni, Some aspects of semilinear elliptic equations, Nonlinear diffusion equations and their equilibrium states (W.M. Ni, L.A. Peletier and J. Serrin, eds.) Springer Verlag, Berlin (1988), 171-215. Zbl0676.35026MR956087
  27. [27] P.H. Rabinowitz, A note on a semilinear elliptic equation on Rn, Nonlinear Analysis, a tribute in honour of Giovanni Prodi (A. Ambrosetti and A. Marino, eds., Quademi della Scuola Normale Superiore, Pisa) (1991), 307-317. Zbl0836.35045MR1205391
  28. [28] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys.43 (1992), 270-291. Zbl0763.35087MR1162728
  29. [29] E. Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993), 561-590. Zbl0803.58013MR1249107
  30. [30] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1979), 149-162. Zbl0356.35028MR454365
  31. [31] C.A. Stuart, Bifurcation in LP(Rn) for a semilinear elliptic equation, Proc. London Math. Soc. (3) 57 (1988), 511-541. Zbl0673.35005MR960098

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.