Strutture subriemanniane in alcuni problemi di Analisi
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 2, page 273-298
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topLanconelli, Ermanno. "Strutture subriemanniane in alcuni problemi di Analisi." Bollettino dell'Unione Matematica Italiana 8-B.2 (2005): 273-298. <http://eudml.org/doc/194930>.
@article{Lanconelli2005,
abstract = {Vengono presentati alcuni problemi, idee e tecniche sorte nell'ambito della teoria delle equazioni alle derivate parziali del secondo ordine, con forma caratteristica semidefinita positiva e con soggiacenti strutture sub-riemanniane. Se ne traccia lo sviluppo a partire dalla classica teoria delle funzioni armoniche e caloriche, attraverso la teoria del potenziale negli spazi armonici astratti e la teoria della regolarità locale delle soluzioni.},
author = {Lanconelli, Ermanno},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {6},
number = {2},
pages = {273-298},
publisher = {Unione Matematica Italiana},
title = {Strutture subriemanniane in alcuni problemi di Analisi},
url = {http://eudml.org/doc/194930},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Lanconelli, Ermanno
TI - Strutture subriemanniane in alcuni problemi di Analisi
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/6//
PB - Unione Matematica Italiana
VL - 8-B
IS - 2
SP - 273
EP - 298
AB - Vengono presentati alcuni problemi, idee e tecniche sorte nell'ambito della teoria delle equazioni alle derivate parziali del secondo ordine, con forma caratteristica semidefinita positiva e con soggiacenti strutture sub-riemanniane. Se ne traccia lo sviluppo a partire dalla classica teoria delle funzioni armoniche e caloriche, attraverso la teoria del potenziale negli spazi armonici astratti e la teoria della regolarità locale delle soluzioni.
LA - ita
UR - http://eudml.org/doc/194930
ER -
References
top- AMANO, K., Maximum Principle for degenerate elliptic-parabolic operators, Ind. Univ. Math. J., 28, no. 4 (1979), 545-557. Zbl0423.35023MR542943
- BEDFORD, E. - GAVEAU, B., Hypersurfaces with bounded Levi form, Ind. Univ. Mat. J, 27, no. 5 (1978), 867-873. Zbl0365.32011MR499287
- BONY, J. M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptic dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304. Zbl0176.09703MR262881
- BIROLI, M. - MOSCO, U., Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 6 (1995), 37-44. Zbl0837.31006MR1340280
- COSTANTINESCU, C. - CORNEA, A., Potential Theory on Harmonic Spaces, Springer-VerlagBerlin Heidelberg New York1972. Zbl0248.31011MR419799
- CITTI, G., -regularity of solutions of the Levi equation, Ann. Inst. H. Poincaré, Anal. Non Linaire, 15, no. 4 (1998), 517-534. Zbl0921.35033MR1632929
- CITTI, G. - LANCONELLI, E. - MONTANARI, A., Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Mathematica, 188 (2002), 87-128. Zbl1030.35084MR1947459
- CITTI, G. - MONTANARI, A., -regularity of solutions of an equation of Levis type in , Ann. Mat. Pura Appl., 180 (2001), 27-58. Zbl1030.35019MR1848050
- DE GIORGI, E., Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 3, 6 (1957), 25-43. Zbl0084.31901MR93649
- DERRIDJ, M., Une problème aux limite pour une classe dopérateur du second ordre hypoelliptiques, Ann. Inst. Fourier (Grenoble), 21 (1971), 99-148. Zbl0215.45405MR601055
- FICHERA, G., Sulle equazioni differenziali lineari ellitico-paraboliche del secondo ordine, Atti Accad, Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat., 5 (1956), 1-30. Zbl0075.28102MR89348
- FOLLAND, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207. Zbl0312.35026MR494315
- FRANCHI, B. - LANCONELLI, E., De Giorgi's Theorem for a Class of Strongly Degenerate Elliptic Equations, Atti Accad. Naz. Lincei Rend Cl. Sci. Fis. Mat. Natur., 72, no. 5 (1983), 273-277. Zbl0543.35041MR728257
- FRANCHI, B. - LANCONELLI, E., Une métrique associée à une classe dopérateurs elliptiques dégénerés, Proceedings of the meeting «Linear Partial and Pseudo Differential Operators», Torino (1982), Rend. Sem. Mat. Univ. e Politec. Special Issue (1984), 105-114. Zbl0553.35033MR745979
- FRANCHI, B. - LANCONELLI, E., Hölder Regularity Theorem for a Class of Linear Nonuniformly Elliptic Operators with Measurable Coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10, no. 6 (1983), 523-541. Zbl0552.35032MR753153
- FRANCHI, B. - LU, G. - WHEEDEN, R., A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices (1996), 1-14. Zbl0856.43006MR1383947
- GRIGOR'YAN, A., The heat equation on non-compact Riemannian maniflods, Matem. Sbornik, 182 (1991), 55-87. Engl. Transl. Math USSR Sb., 72 (1992), 47-77. Zbl0776.58035
- GAROFALO, N. - NHIEU, D. H., Isoperimetric and Sobolev inequalty for Carnot-Carathéodory spaces and the existence of minimal sufaces, Comm. Pure Appl. Math., 10 (1996), 1153-1196. Zbl0880.35032
- HADAMARD, J., Extension à l'èquation de la chaleur d'un théorème de A. Harnack, Rend. Circ. Mat. Palermo, 3, no. 2 (1954), 337-346. Zbl0058.32201MR68713
- HAJLASZ, P. - KOSKELA, P., Sobolev met Poincaré, Memoirs Amer. Math. Soc., 688 (2000). Zbl0954.46022MR1683160
- HORMANDER, L., Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. Zbl0156.10701MR222474
- HOWE, R., On the rôle of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc., 3, no. 2 (1980), 821-843. Zbl0442.43002MR578375
- JERISON, D., The Poincaré inequality for vector fields satisfying Hormander condition, Duke Math. J., 53 (1986), 503-523. Zbl0614.35066MR850547
- JERISON, D. - LEE, J. M., Intrinsic CR normal coordinates and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1-13. Zbl0634.32016MR982177
- JERISON, D. - LEE, J. M., Extremals of the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Diff. Geom., 29 (1989), 303-343. Zbl0671.32016MR982177
- KOLMOGOROV, A., Zur Theorie der Brownschen Bewegung, Ann. Math., II Ser., 35 (1934), 116-117. Zbl0008.39906MR1503147
- LANCONELLI, E., Regolaritá hölderiana delle soluzioni deboli di certe equazioni ellittiche fortemente degeneri, Seminario di Analisi Matematica Ist. Mat. Univ. Bologna (1981-1982), IX.1.-IX.27.
- LANCONELLI, E. - KOGOJ, A. E., X-Elliptic Operators and X-Control Distances, Ricerche di Matematica, Napoli, II Special Issue in Memory of Ennio De Giorgi, 38 (2000), 223-243. Zbl1029.35102MR1826225
- LANCONELLI, E. - MORBIDELLI, D., On the Poincaré inequality for vector fields, Arkiv för Matematik, 38 (2000), 327-342. Zbl1131.46304MR1785405
- LANCONELLI, E. - POLIDORO, S., On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Pol. Torino, 52, no. 1 (1994), 29-63. Zbl0811.35018MR1289901
- LANCONELLI, E. - PASCUCCI, A. - POLIDORO, S., Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, in «Nonlinear Problems in Mathematical Physics and Related Topics Vol. II In Honor of Professor O. A. Ladyzhenskaya»International Mathematical SeriesKluwer Ed. (2002), 243-265. Zbl1032.35114MR1972000
- LASCIALFARI, F. - MONTANARI, A., Smooth regularity for solutions of the Levi Monge-Ampère equation, Rend. Mat. Acc. Naz. Lincei, 12 (2001), 115-123. Zbl1097.35061MR1898454
- MALCHIODI, A. - UGUZZONI, F., A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl., 81 (2002), 983-997. Zbl1042.53025MR1946912
- MONTANARI, A. - LANCONELLI, E., Pseudoconvex Fully Nonlinear Partial Differential Operators. Strong Comparison Theorems, J. Differential Equations, 202 (2004), 306-331. Zbl1161.35414MR2068443
- MONTANARI, A. - MORBIDELLI, D., Balls defined by nonsmooth vector fields and the Poincaré inequality, Annales Inst. Fourier (Grenoble), 54, 2 (2004), 327-339. Zbl1069.46504MR2073841
- MOSER, J., On Harnacks Theoreme for Elliptic Differential equations, Comm. Pure Appl. Math., 24, 6 (1961), 577-591. Zbl0111.09302MR159138
- MOSER, J., On a pointwise Estimate for Parabolic Differential Equations, Comm. Pure Appl. Math., 24 (1971), 727-740. Zbl0227.35016MR288405
- NAGEL, A. - STEIN, E. M. - WAINGER, S., Balls and metrics defined by vectors fields I: Basic properties, Acta Math., 155 (1985), 103-147. Zbl0578.32044MR793239
- NIRENBERG, L., A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6, no. 6 (1953), 167-177. Zbl0050.09601MR55544
- OLEINIK, O. A. - RADKEVIC, E. V., Second Order Equations With Nonnegative Characteristic Form, American Mathematical Society, Providence, Rhode Island (1973). Translated from Itogi Nauki-Serija Matematika (1971). MR457907
- PICONE, M., Maggiorazioni degli integrali di equazioni lineari ellittico-paraboliche alle derivate parziali del secondo ordine, Rend. Accad. Naz. Lincei., 5, no. 6 (1927), 138-143.
- PICONE, M., Maggiorazione degli integrali delle equazioni totalmente paraboliche del secodno ordine, Annali Mat. Pura Appl., 74 (1929), 145-192. MR1553141
- PICONE, M., Nuove formule di maggiorazione per gli integrali delle equazioni lineari alle derivate parziali del secondo ordine ellittico-paraboliche, Atti. Accad. Naz. Lincei, 28, no. 6 (1938), 331-338. Zbl0020.35903
- PINI, B., Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, Rend. Sem. Mat. Univ. Padova, 23 (1954), 422-434. Zbl0057.32801MR65794
- PHILLIPS, R. - SARASON, L., Elliptic-parabolic equations of the second order, J. Math. Mech., 17 (1967/1968), 891-917. Zbl0163.34402MR219868
- POLIDORO, S. - PASCUCCI, A., The Moser iterative method for a class of ultraparabolic equations, Commun. Contemp. Math., 6, 2 (2004), 1-23. Zbl1096.35080MR2068847
- RAMPAZZO, F. - SUSSMANN, H. J., Set-valued differentials and a nonsmooth version of Chows theorem, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, 2001, IEEE Publications, New York, 3 (2001), 2613- 2618.
- ROTHSCHILD, L. P. - STEIN, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. Zbl0346.35030MR436223
- SALOFF-COSTE, L., A note on Poincaré, Sobolev and Harnack inequality, Internat. Math. Res. Notices (1992), 27-38. Zbl0769.58054MR1150597
- SALOFF-COSTE, L., Aspects of Sobolev-type inequalities, London Math. Society, Lectures Note Series289, Cambridge University Press (2002). Zbl0991.35002MR1872526
- SLODKOWKI, Z. - TOMASSINI, G., Weak solutions for the Levi equation and envelope of holomorphy, Ind. Univ. Mat. J., 101, no. 2 (1991), 392-407. Zbl0744.35015MR1136942
- SLODKOWSKI, Z. - TOMASSINI, G., The Levi equation in higher dimension and relationships to the envelope of holomorphy, Amer. J. of Math., 116 (1994), 479- 499. Zbl0802.35050MR1269612
- STEIN, E. M., Harmonic Analisys: real variable methods, orthogonality and oscillatory integral, Priceton Universty Press, Princeton, N.J (1978). Zbl0821.42001
- STAMPACCHIA, G., Le Probléme de Dirichlet pour les équations elliptiqes du second ordre á coefficients discontinues, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. Zbl0151.15401MR192177
- TOMASSINI, G., Geometric properties of the solutions of the Levi equation, Rend. Sem. Mat. Fis. Milano, 57 (1987), 103-108. Zbl0688.32012MR1017922
- TOMASSINI, G., Geometric properties of solutions of the Levi Equation, Ann. Mat. Pura Appl., 27, no. 5 (1988), 331-334. Zbl0681.35017MR980986
- TOMASSINI, G., Nonlinear equations related to the Levi form, Rend. Circ. Mat. Palermo, 40 (1991), 281-297. Zbl0836.35056MR1151589
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.