Strutture subriemanniane in alcuni problemi di Analisi

Ermanno Lanconelli

Bollettino dell'Unione Matematica Italiana (2005)

  • Volume: 8-B, Issue: 2, page 273-298
  • ISSN: 0392-4041

Abstract

top
We present some problems, ideas and techniques arising in the theory of Partial Differential Equations of Second Order with non-negative characteristic form and with underlying sub-riemannian structures. We show their development starting from the basic properties of classical harmonic and caloric functions. We stress their relationship with abstract potential theory and local regularity theory of solutions.

How to cite

top

Lanconelli, Ermanno. "Strutture subriemanniane in alcuni problemi di Analisi." Bollettino dell'Unione Matematica Italiana 8-B.2 (2005): 273-298. <http://eudml.org/doc/194930>.

@article{Lanconelli2005,
abstract = {Vengono presentati alcuni problemi, idee e tecniche sorte nell'ambito della teoria delle equazioni alle derivate parziali del secondo ordine, con forma caratteristica semidefinita positiva e con soggiacenti strutture sub-riemanniane. Se ne traccia lo sviluppo a partire dalla classica teoria delle funzioni armoniche e caloriche, attraverso la teoria del potenziale negli spazi armonici astratti e la teoria della regolarità locale delle soluzioni.},
author = {Lanconelli, Ermanno},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {6},
number = {2},
pages = {273-298},
publisher = {Unione Matematica Italiana},
title = {Strutture subriemanniane in alcuni problemi di Analisi},
url = {http://eudml.org/doc/194930},
volume = {8-B},
year = {2005},
}

TY - JOUR
AU - Lanconelli, Ermanno
TI - Strutture subriemanniane in alcuni problemi di Analisi
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/6//
PB - Unione Matematica Italiana
VL - 8-B
IS - 2
SP - 273
EP - 298
AB - Vengono presentati alcuni problemi, idee e tecniche sorte nell'ambito della teoria delle equazioni alle derivate parziali del secondo ordine, con forma caratteristica semidefinita positiva e con soggiacenti strutture sub-riemanniane. Se ne traccia lo sviluppo a partire dalla classica teoria delle funzioni armoniche e caloriche, attraverso la teoria del potenziale negli spazi armonici astratti e la teoria della regolarità locale delle soluzioni.
LA - ita
UR - http://eudml.org/doc/194930
ER -

References

top
  1. AMANO, K., Maximum Principle for degenerate elliptic-parabolic operators, Ind. Univ. Math. J., 28, no. 4 (1979), 545-557. Zbl0423.35023MR542943
  2. BEDFORD, E. - GAVEAU, B., Hypersurfaces with bounded Levi form, Ind. Univ. Mat. J, 27, no. 5 (1978), 867-873. Zbl0365.32011MR499287
  3. BONY, J. M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptic dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304. Zbl0176.09703MR262881
  4. BIROLI, M. - MOSCO, U., Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 6 (1995), 37-44. Zbl0837.31006MR1340280
  5. COSTANTINESCU, C. - CORNEA, A., Potential Theory on Harmonic Spaces, Springer-VerlagBerlin Heidelberg New York1972. Zbl0248.31011MR419799
  6. CITTI, G., C -regularity of solutions of the Levi equation, Ann. Inst. H. Poincaré, Anal. Non Linaire, 15, no. 4 (1998), 517-534. Zbl0921.35033MR1632929
  7. CITTI, G. - LANCONELLI, E. - MONTANARI, A., Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Mathematica, 188 (2002), 87-128. Zbl1030.35084MR1947459
  8. CITTI, G. - MONTANARI, A., C -regularity of solutions of an equation of Levi’s type in R 2 N + 1 , Ann. Mat. Pura Appl., 180 (2001), 27-58. Zbl1030.35019MR1848050
  9. DE GIORGI, E., Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 3, 6 (1957), 25-43. Zbl0084.31901MR93649
  10. DERRIDJ, M., Une problème aux limite pour une classe d’opérateur du second ordre hypoelliptiques, Ann. Inst. Fourier (Grenoble), 21 (1971), 99-148. Zbl0215.45405MR601055
  11. FICHERA, G., Sulle equazioni differenziali lineari ellitico-paraboliche del secondo ordine, Atti Accad, Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat., 5 (1956), 1-30. Zbl0075.28102MR89348
  12. FOLLAND, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207. Zbl0312.35026MR494315
  13. FRANCHI, B. - LANCONELLI, E., De Giorgi's Theorem for a Class of Strongly Degenerate Elliptic Equations, Atti Accad. Naz. Lincei Rend Cl. Sci. Fis. Mat. Natur., 72, no. 5 (1983), 273-277. Zbl0543.35041MR728257
  14. FRANCHI, B. - LANCONELLI, E., Une métrique associée à une classe d’opérateurs elliptiques dégénerés, Proceedings of the meeting «Linear Partial and Pseudo Differential Operators», Torino (1982), Rend. Sem. Mat. Univ. e Politec. Special Issue (1984), 105-114. Zbl0553.35033MR745979
  15. FRANCHI, B. - LANCONELLI, E., Hölder Regularity Theorem for a Class of Linear Nonuniformly Elliptic Operators with Measurable Coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10, no. 6 (1983), 523-541. Zbl0552.35032MR753153
  16. FRANCHI, B. - LU, G. - WHEEDEN, R., A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices (1996), 1-14. Zbl0856.43006MR1383947
  17. GRIGOR'YAN, A., The heat equation on non-compact Riemannian maniflods, Matem. Sbornik, 182 (1991), 55-87. Engl. Transl. Math USSR Sb., 72 (1992), 47-77. Zbl0776.58035
  18. GAROFALO, N. - NHIEU, D. H., Isoperimetric and Sobolev inequalty for Carnot-Carathéodory spaces and the existence of minimal sufaces, Comm. Pure Appl. Math., 10 (1996), 1153-1196. Zbl0880.35032
  19. HADAMARD, J., Extension à l'èquation de la chaleur d'un théorème de A. Harnack, Rend. Circ. Mat. Palermo, 3, no. 2 (1954), 337-346. Zbl0058.32201MR68713
  20. HAJLASZ, P. - KOSKELA, P., Sobolev met Poincaré, Memoirs Amer. Math. Soc., 688 (2000). Zbl0954.46022MR1683160
  21. HORMANDER, L., Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. Zbl0156.10701MR222474
  22. HOWE, R., On the rôle of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc., 3, no. 2 (1980), 821-843. Zbl0442.43002MR578375
  23. JERISON, D., The Poincaré inequality for vector fields satisfying Hormander condition, Duke Math. J., 53 (1986), 503-523. Zbl0614.35066MR850547
  24. JERISON, D. - LEE, J. M., Intrinsic CR normal coordinates and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1-13. Zbl0634.32016MR982177
  25. JERISON, D. - LEE, J. M., Extremals of the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Diff. Geom., 29 (1989), 303-343. Zbl0671.32016MR982177
  26. KOLMOGOROV, A., Zur Theorie der Brownschen Bewegung, Ann. Math., II Ser., 35 (1934), 116-117. Zbl0008.39906MR1503147
  27. LANCONELLI, E., Regolaritá hölderiana delle soluzioni deboli di certe equazioni ellittiche fortemente degeneri, Seminario di Analisi Matematica Ist. Mat. Univ. Bologna (1981-1982), IX.1.-IX.27. 
  28. LANCONELLI, E. - KOGOJ, A. E., X-Elliptic Operators and X-Control Distances, Ricerche di Matematica, Napoli, II Special Issue in Memory of Ennio De Giorgi, 38 (2000), 223-243. Zbl1029.35102MR1826225
  29. LANCONELLI, E. - MORBIDELLI, D., On the Poincaré inequality for vector fields, Arkiv för Matematik, 38 (2000), 327-342. Zbl1131.46304MR1785405
  30. LANCONELLI, E. - POLIDORO, S., On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Pol. Torino, 52, no. 1 (1994), 29-63. Zbl0811.35018MR1289901
  31. LANCONELLI, E. - PASCUCCI, A. - POLIDORO, S., Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, in «Nonlinear Problems in Mathematical Physics and Related Topics Vol. II In Honor of Professor O. A. Ladyzhenskaya»International Mathematical SeriesKluwer Ed. (2002), 243-265. Zbl1032.35114MR1972000
  32. LASCIALFARI, F. - MONTANARI, A., Smooth regularity for solutions of the Levi Monge-Ampère equation, Rend. Mat. Acc. Naz. Lincei, 12 (2001), 115-123. Zbl1097.35061MR1898454
  33. MALCHIODI, A. - UGUZZONI, F., A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl., 81 (2002), 983-997. Zbl1042.53025MR1946912
  34. MONTANARI, A. - LANCONELLI, E., Pseudoconvex Fully Nonlinear Partial Differential Operators. Strong Comparison Theorems, J. Differential Equations, 202 (2004), 306-331. Zbl1161.35414MR2068443
  35. MONTANARI, A. - MORBIDELLI, D., Balls defined by nonsmooth vector fields and the Poincaré inequality, Annales Inst. Fourier (Grenoble), 54, 2 (2004), 327-339. Zbl1069.46504MR2073841
  36. MOSER, J., On Harnack’s Theoreme for Elliptic Differential equations, Comm. Pure Appl. Math., 24, 6 (1961), 577-591. Zbl0111.09302MR159138
  37. MOSER, J., On a pointwise Estimate for Parabolic Differential Equations, Comm. Pure Appl. Math., 24 (1971), 727-740. Zbl0227.35016MR288405
  38. NAGEL, A. - STEIN, E. M. - WAINGER, S., Balls and metrics defined by vectors fields I: Basic properties, Acta Math., 155 (1985), 103-147. Zbl0578.32044MR793239
  39. NIRENBERG, L., A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6, no. 6 (1953), 167-177. Zbl0050.09601MR55544
  40. OLEINIK, O. A. - RADKEVIC, E. V., Second Order Equations With Nonnegative Characteristic Form, American Mathematical Society, Providence, Rhode Island (1973). Translated from Itogi Nauki-Serija Matematika (1971). MR457907
  41. PICONE, M., Maggiorazioni degli integrali di equazioni lineari ellittico-paraboliche alle derivate parziali del secondo ordine, Rend. Accad. Naz. Lincei., 5, no. 6 (1927), 138-143. 
  42. PICONE, M., Maggiorazione degli integrali delle equazioni totalmente paraboliche del secodno ordine, Annali Mat. Pura Appl., 74 (1929), 145-192. MR1553141
  43. PICONE, M., Nuove formule di maggiorazione per gli integrali delle equazioni lineari alle derivate parziali del secondo ordine ellittico-paraboliche, Atti. Accad. Naz. Lincei, 28, no. 6 (1938), 331-338. Zbl0020.35903
  44. PINI, B., Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, Rend. Sem. Mat. Univ. Padova, 23 (1954), 422-434. Zbl0057.32801MR65794
  45. PHILLIPS, R. - SARASON, L., Elliptic-parabolic equations of the second order, J. Math. Mech., 17 (1967/1968), 891-917. Zbl0163.34402MR219868
  46. POLIDORO, S. - PASCUCCI, A., The Moser iterative method for a class of ultraparabolic equations, Commun. Contemp. Math., 6, 2 (2004), 1-23. Zbl1096.35080MR2068847
  47. RAMPAZZO, F. - SUSSMANN, H. J., Set-valued differentials and a nonsmooth version of Chow’s theorem, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, 2001, IEEE Publications, New York, 3 (2001), 2613- 2618. 
  48. ROTHSCHILD, L. P. - STEIN, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. Zbl0346.35030MR436223
  49. SALOFF-COSTE, L., A note on Poincaré, Sobolev and Harnack inequality, Internat. Math. Res. Notices (1992), 27-38. Zbl0769.58054MR1150597
  50. SALOFF-COSTE, L., Aspects of Sobolev-type inequalities, London Math. Society, Lectures Note Series289, Cambridge University Press (2002). Zbl0991.35002MR1872526
  51. SLODKOWKI, Z. - TOMASSINI, G., Weak solutions for the Levi equation and envelope of holomorphy, Ind. Univ. Mat. J., 101, no. 2 (1991), 392-407. Zbl0744.35015MR1136942
  52. SLODKOWSKI, Z. - TOMASSINI, G., The Levi equation in higher dimension and relationships to the envelope of holomorphy, Amer. J. of Math., 116 (1994), 479- 499. Zbl0802.35050MR1269612
  53. STEIN, E. M., Harmonic Analisys: real variable methods, orthogonality and oscillatory integral, Priceton Universty Press, Princeton, N.J (1978). Zbl0821.42001
  54. STAMPACCHIA, G., Le Probléme de Dirichlet pour les équations elliptiqes du second ordre á coefficients discontinues, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. Zbl0151.15401MR192177
  55. TOMASSINI, G., Geometric properties of the solutions of the Levi equation, Rend. Sem. Mat. Fis. Milano, 57 (1987), 103-108. Zbl0688.32012MR1017922
  56. TOMASSINI, G., Geometric properties of solutions of the Levi Equation, Ann. Mat. Pura Appl., 27, no. 5 (1988), 331-334. Zbl0681.35017MR980986
  57. TOMASSINI, G., Nonlinear equations related to the Levi form, Rend. Circ. Mat. Palermo, 40 (1991), 281-297. Zbl0836.35056MR1151589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.