On holomorphic retracts of dimension 1

Jean-Pierre Vigué

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1998)

  • Volume: 9, Issue: 1, page 31-41
  • ISSN: 1120-6330

Abstract

top
In this Note, I study existence and unicity of holomorphic retractions on complex submanifolds of dimension 1.

How to cite

top

Vigué, Jean-Pierre. "Sur les rétractes holomorphes de dimension 1." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.1 (1998): 31-41. <http://eudml.org/doc/252450>.

@article{Vigué1998,
author = {Vigué, Jean-Pierre},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Holomorphic retracts; Complex geodesics; Invariant distances; complex geodesic; holomorphic retraction},
language = {fre},
month = {3},
number = {1},
pages = {31-41},
publisher = {Accademia Nazionale dei Lincei},
title = {Sur les rétractes holomorphes de dimension 1},
url = {http://eudml.org/doc/252450},
volume = {9},
year = {1998},
}

TY - JOUR
AU - Vigué, Jean-Pierre
TI - Sur les rétractes holomorphes de dimension 1
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/3//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 1
SP - 31
EP - 41
LA - fre
KW - Holomorphic retracts; Complex geodesics; Invariant distances; complex geodesic; holomorphic retraction
UR - http://eudml.org/doc/252450
ER -

References

top
  1. Belkhchicha, L., Caractérisation des isomorphismes analytiques de certains domaines bornés. C. R. Acad. Sc. Paris, s. I, Math., 313, 1991, 281-284. Zbl0739.32026MR1126396
  2. Belkhchicha, L., Caractérisation des isomorphismes analytiques sur la boule-unité de C n pour une norme. Math. Z., 215, 1994, 129-141. Zbl0801.32009MR1254816DOI10.1007/BF02571702
  3. Cartan, H., Sur les fonctions de plusieurs variables complexes: l’itérations des transformations intérieures d’un domaine borné. Math. Z., 35, 1932, 760-773. Zbl0004.40602MR1545327DOI10.1007/BF01186587
  4. Cartan, H., Sur les rétractions d’une variété. C.R. Acad. Sc. Paris, s. I, Math., 303, 1986, 715-716. Zbl0609.32021MR870703
  5. Dineen, S., The Schwarz Lemma. Oxford Math. Monographs, Clarendon Press, Oxford1989. Zbl0708.46046MR1033739
  6. Dineen, S., Convexity in complex analysis. In: P. Jakobczak - W. Pleasniak (eds.), Topics in complex analysis. Banach Center Publications, 31, Warszawa1995, 151-162. Zbl0842.32019MR1341385
  7. Eisenman, D., Intrinsic measures on complex manifolds. MemoirsAmer. Math. Soc., 96, 1970. Zbl0197.05901
  8. Franzoni, T. - Vesentini, E., Holomorphic maps and invariant distances. Math. Studies, 40, North-Holland, Amsterdam-New York1980. Zbl0447.46040MR563329
  9. Gentili, G., On non-uniqueness of complex geodesics in convex bounded domains. Atti Acc. Lincei Rend. fis., s. 8, v. 79, 1985, 90-97. Zbl0637.46018MR944377
  10. Gentili, G., On complex geodesics of balanced convex domains. Ann. Mat. Pura et Appl., 144, 1986, 113-130. Zbl0619.32015MR870872DOI10.1007/BF01760814
  11. Harris, L., Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. In: J. A. Barroso (ed.), Advances in Holomorphy. Proceedings of the Seminario de Holomorfia (Rio de Janeiro, 26-28 September 1977). Math. Studies, 34, North-Holland, Amsterdam-New York1979, 345-406. Zbl0409.46053MR520667
  12. Heath, L. - Suffridge, T., Holomorphic retracts in complex n -space. Illinois J. Math., 25, 1981, 125-135. Zbl0463.32008MR602903
  13. Jarnicki, M. - Pflug, P., Invariant distances and metrics in complex analysis. De Gruyter Expositions in Mathematics, 9, Walter de Gruyter, Berlin-New York1993. Zbl0789.32001MR1242120DOI10.1515/9783110870312
  14. Kiernan, P., On the relations between taut, tight and hyperbolic manifolds. Bull. Amer. Math. Soc., 76, 1970, 49-51. Zbl0192.44103MR252678
  15. Kobayashi, S., Intrinsic distances, measures and geometric function theory. Bull. Amer. Math. Soc., 82, 1976, 357-416. Zbl0346.32031MR414940
  16. Lempert, L., La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. Fr., 109, 1981, 427-474. Zbl0492.32025MR660145
  17. Lempert, L., Holomorphic retracts and intrinsic metrics in convex domains. Anal. Math., 8, 1982, 257-261. Zbl0509.32015MR690838DOI10.1007/BF02201775
  18. Royden, H. - Wong, P., Carathéodory and Kobayashi metrics on convex domains. Preprint 1983. 
  19. Thorp, E. - Whitley, R., The strong maximum modulus theorem for analytic functions into a Banach space. Proc. Amer. Math. Soc., 18, 1967, 640-646. Zbl0185.20102MR214794
  20. Vesentini, E., Complex geodesics. Compositio Math., 44, 1981, 375-394. Zbl0488.30015MR662466
  21. Vesentini, E., Complex geodesics and holomorphic mappings. Symposia Math., 26, 1982, 211-230. Zbl0506.32008MR663034
  22. Vesentini, E., Invariant distances and invariant differential metrics in locally convex spaces. In: W. Zelazko (ed.), Spectral Theory. Banach Center Publications, 8, Warszawa1982, 493-512. Zbl0505.32020MR738313
  23. Vigué, J.-P., Sur les points fixes d’applications holomorphes. C. R. Acad. Sc. Paris, I, Math., 303, 1986, 927-930. Zbl0607.32016MR873396
  24. Wu, H., Normal families of holomorphic mappings. Acta Math., 119, 1967, 194-233. Zbl0158.33301MR224869

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.