A classification of ideals in crossed products.
Page 1 Next
Dorte Olesen (1979)
Mathematica Scandinavica
Michael Barr (1977)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
A. Wawrzyńczyk (1970)
Studia Mathematica
Eberhard Kaniuth (1976)
Mathematische Zeitschrift
Detlev Poguntke (1976)
Monatshefte für Mathematik
Shou Lin, Mihail G. Tkachenko (2013)
Commentationes Mathematicae Universitatis Carolinae
We prove that every connected locally compact Abelian topological group is sequentially connected, i.e., it cannot be the union of two proper disjoint sequentially closed subsets. This fact is then applied to the study of extensions of topological groups. We show, in particular, that if is a connected locally compact Abelian subgroup of a Hausdorff topological group and the quotient space is sequentially connected, then so is .
D. J. Hajela (1986)
Annales de l'institut Fourier
Various techniques are presented for constructing (p) sets which are not for all . The main result is that there is a (4) set in the dual of any compact abelian group which is not for all . Along the way to proving this, new constructions are given in dual groups in which constructions were already known of (p) not sets, for certain values of . The main new constructions in specific dual groups are:– there is a (2k) set which is not in for all , and , and in ( a prime,...
H.J. Hey, J. Ludwig (1979)
Mathematische Annalen
Martin E. Walter (1986)
Mathematica Scandinavica
Bernard de Mathan (1971/1972)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Bernard de MATHAN de (1971/1972)
Seminaire de Théorie des Nombres de Bordeaux
Krzysztof Maurin, Lidia Maurin (1975)
Annales Polonici Mathematici
R.W. Henrichs, K. Hartmann, R. Lasser (1979)
Monatshefte für Mathematik
M. Enock, J. M. Schwartz (1986)
Annales de l'institut Fourier
On munit la classe des algèbres de Kac d’une nouvelle classe de morphismes, stable par dualité. Cela permet de rendre compte, dans les cas abélien ou symétrique, de la catégorie des groupes localement compacts munis des morphismes continus de groupe. Le lien avec les morphismes précédemment définis et beaucoup plus restrictifs est établi.
Rangachari Venkataraman (1975)
Mathematische Zeitschrift
Michael Voit, Peter Hermann (1995)
Forum mathematicum
Terje Sund (1976)
Mathematische Annalen
D. Armacost (1972)
Fundamenta Mathematicae
F. Bombal, G. Vera (1973)
Collectanea Mathematica
Dikran Dikranjan, Dmitri Shakhmatov (2013)
Fundamenta Mathematicae
According to Comfort, Raczkowski and Trigos-Arrieta, a dense subgroup D of a compact abelian group G determines G if the restriction homomorphism Ĝ → D̂ of the dual groups is a topological isomorphism. We introduce four conditions on D that are necessary for it to determine G and we resolve the following question: If one of these conditions holds for every dense (or -dense) subgroup D of G, must G be metrizable? In particular, we prove (in ZFC) that a compact abelian group determined by all its...
Page 1 Next