On generalized Moser-Trudinger inequalities without boundary condition
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 3, page 743-785
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topČerný, Robert. "On generalized Moser-Trudinger inequalities without boundary condition." Czechoslovak Mathematical Journal 62.3 (2012): 743-785. <http://eudml.org/doc/247042>.
@article{Černý2012,
abstract = {We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum.},
author = {Černý, Robert},
journal = {Czechoslovak Mathematical Journal},
keywords = {Orlicz space; Orlicz-Sobolev space; embedding theorem; sharp constant; Moser-Trudinger inequality; concentration-compactness principle; Orlicz space; Orlicz-Sobolev space; embedding theorem; Moser-Trudinger inequality; concentration-compactness principle},
language = {eng},
number = {3},
pages = {743-785},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized Moser-Trudinger inequalities without boundary condition},
url = {http://eudml.org/doc/247042},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Černý, Robert
TI - On generalized Moser-Trudinger inequalities without boundary condition
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 743
EP - 785
AB - We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum.
LA - eng
KW - Orlicz space; Orlicz-Sobolev space; embedding theorem; sharp constant; Moser-Trudinger inequality; concentration-compactness principle; Orlicz space; Orlicz-Sobolev space; embedding theorem; Moser-Trudinger inequality; concentration-compactness principle
UR - http://eudml.org/doc/247042
ER -
References
top- Černý, R., Concentration-compactness principle for embedding into multiple exponential spaces, Math. Inequal. Appl. 15 (2012), 165-198. (2012) Zbl1236.46027MR2919441
- Černý, R., 10.2478/s11533-011-0102-3, Cent. Eur. J. Math. 10 (2012), 590-602. (2012) MR2893423DOI10.2478/s11533-011-0102-3
- Černý, R., Cianchi, A., Hencl, S., Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs, (to appear) in Ann. Mat. Pura Appl.
- Černý, R., Gurka, P., Hencl, S., 10.4171/ZAA/1439, Z. Anal. Anwend. 30 (2011), 355-375. (2011) Zbl1225.46026MR2819500DOI10.4171/ZAA/1439
- Černý, R., Mašková, S., 10.1007/s10587-010-0048-9, Czech. Math. J. 60 (2010), 751-782. (2010) Zbl1224.46064MR2672414DOI10.1007/s10587-010-0048-9
- Cherrier, P., Meilleures constants dans des inégalités rélatives aux espaces de Sobolev, Bull. Sci. Math., II. Ser. 108 (1984), 225-262. (1984) MR0771911
- Cianchi, A., 10.1512/iumj.1996.45.1958, Indiana Univ. Math. J. 45 (1996), 39-65. (1996) Zbl0860.46022MR1406683DOI10.1512/iumj.1996.45.1958
- Cianchi, A., 10.1512/iumj.2005.54.2589, Indiana Univ. Math. J. 54 (2005), 669-705. (2005) Zbl1097.46016MR2151230DOI10.1512/iumj.2005.54.2589
- Cianchi, A., Pick, L., 10.1007/BF02384772, Ark. Mat. 36 (1998), 317-340. (1998) MR1650446DOI10.1007/BF02384772
- Edmunds, D. E., Gurka, P., Opic, B., 10.1512/iumj.1995.44.1977, Indiana Univ. Math. J. 44 (1995), 19-43. (1995) Zbl0826.47021MR1336431DOI10.1512/iumj.1995.44.1977
- Edmunds, D. E., Gurka, P., Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Stud. Math. 115 (1995), 151-181. (1995) Zbl0829.47024MR1347439
- Edmunds, D. E., Gurka, P., Opic, B., 10.1017/S0308210500023210, Proc. R. Soc. Edinb., Section A 126 (1996), 995-1009. (1996) Zbl0860.46024MR1415818DOI10.1017/S0308210500023210
- Edmunds, D. E., Gurka, P., Opic, B., 10.1006/jfan.1996.3037, J. Funct. Anal. 146 (1997), 116-150. (1997) Zbl0934.46036MR1446377DOI10.1006/jfan.1996.3037
- Edmunds, D. E., Gurka, P., Opic, B., 10.1090/S0002-9939-98-04327-5, Proc. Am. Math. Soc. 126 (1998), 2417-2425. (1998) MR1451796DOI10.1090/S0002-9939-98-04327-5
- Edmunds, D. E., Krbec, M., Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), 119-128. (1995) Zbl0835.46027MR1331250
- Fusco, N., Lions, P.-L., Sbordone, C., 10.1090/S0002-9939-96-03136-X, Proc. Am. Math. Soc. 124 (1996), 561-565. (1996) Zbl0841.46023MR1301025DOI10.1090/S0002-9939-96-03136-X
- Hencl, S., 10.1016/S0022-1236(02)00172-6, J. Funct. Anal. 204 (2003), 196-227. (2003) Zbl1034.46031MR2004749DOI10.1016/S0022-1236(02)00172-6
- Lions, P.-L., 10.4171/RMI/6, Rev. Mat. Iberoam. 1 (1985), 145-201. (1985) Zbl0704.49005MR0834360DOI10.4171/RMI/6
- Moser, J., 10.1512/iumj.1971.20.20101, Indiana Univ. Math. J. 20 (1971), 1077-1092. (1971) Zbl0213.13001MR0301504DOI10.1512/iumj.1971.20.20101
- Opic, B., Pick, L., On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 (1999), 391-467. (1999) Zbl0956.46020MR1698383
- Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces. Pure and Applied Mathematics, Marcel Dekker New York (1991). (1991) MR1113700
- Trudinger, N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-484. (1967) Zbl0163.36402MR0216286
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.