Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems

Haibo Du; Yigang He; Yingying Cheng

Kybernetika (2013)

  • Volume: 49, Issue: 4, page 507-523
  • ISSN: 0023-5954

Abstract

top
The problem of finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems is studied in this paper. The agent dynamic is described by a second-order nonlinear system with uncertain time-varying control coefficients and unknown nonlinear perturbations. Based on the finite-time control technique and graph theory, a class of distributed finite-time control laws are proposed which are only based on the neighbors' information. Under the proposed controller, it is shown that the states of all the agents can reach consensus in a finite time and the final consensus state is the desired signal. As an application of the proposed theoretic results, the problem of distributed finite-time attitude cooperative control for the roll channels of multiple bank-to-turn (BTT) missiles is solved. Simulation results are given to demonstrate the effectiveness of the proposed method.

How to cite

top

Du, Haibo, He, Yigang, and Cheng, Yingying. "Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems." Kybernetika 49.4 (2013): 507-523. <http://eudml.org/doc/260661>.

@article{Du2013,
abstract = {The problem of finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems is studied in this paper. The agent dynamic is described by a second-order nonlinear system with uncertain time-varying control coefficients and unknown nonlinear perturbations. Based on the finite-time control technique and graph theory, a class of distributed finite-time control laws are proposed which are only based on the neighbors' information. Under the proposed controller, it is shown that the states of all the agents can reach consensus in a finite time and the final consensus state is the desired signal. As an application of the proposed theoretic results, the problem of distributed finite-time attitude cooperative control for the roll channels of multiple bank-to-turn (BTT) missiles is solved. Simulation results are given to demonstrate the effectiveness of the proposed method.},
author = {Du, Haibo, He, Yigang, Cheng, Yingying},
journal = {Kybernetika},
keywords = {finite-time control; multi-agent systems; nonlinear system; bank-to-turn missiles; finite-time control; multi-agent systems; nonlinear system; bank-to-turn missiles},
language = {eng},
number = {4},
pages = {507-523},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems},
url = {http://eudml.org/doc/260661},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Du, Haibo
AU - He, Yigang
AU - Cheng, Yingying
TI - Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 4
SP - 507
EP - 523
AB - The problem of finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems is studied in this paper. The agent dynamic is described by a second-order nonlinear system with uncertain time-varying control coefficients and unknown nonlinear perturbations. Based on the finite-time control technique and graph theory, a class of distributed finite-time control laws are proposed which are only based on the neighbors' information. Under the proposed controller, it is shown that the states of all the agents can reach consensus in a finite time and the final consensus state is the desired signal. As an application of the proposed theoretic results, the problem of distributed finite-time attitude cooperative control for the roll channels of multiple bank-to-turn (BTT) missiles is solved. Simulation results are given to demonstrate the effectiveness of the proposed method.
LA - eng
KW - finite-time control; multi-agent systems; nonlinear system; bank-to-turn missiles; finite-time control; multi-agent systems; nonlinear system; bank-to-turn missiles
UR - http://eudml.org/doc/260661
ER -

References

top
  1. Bhat, S., Bernstein, D., 10.1137/S0363012997321358, SIAM J. Control Optim. 38 (2000), 751-766. Zbl0945.34039MR1756893DOI10.1137/S0363012997321358
  2. Cao, Y., Ren, W., Meng, Z., 10.1016/j.sysconle.2010.06.002, Syst. Control Lett. 59 (2010), 522-529. Zbl1207.93103MR2761208DOI10.1016/j.sysconle.2010.06.002
  3. Cortes, J., 10.1016/j.automatica.2006.06.015, Automatica 42 (2006), 1993-2000. Zbl1261.93058MR2259143DOI10.1016/j.automatica.2006.06.015
  4. Dimarogonas, D., Tsiotras, P., Kyriakopoulos, K., 10.1016/j.sysconle.2009.02.002, Syst. Control Lett. 58 (2009), 429-435. Zbl1161.93002MR2518091DOI10.1016/j.sysconle.2009.02.002
  5. Dimarogonas, D., Kyriakopoulos, K., 10.1109/TAC.2007.895897, IEEE Trans. Automat. Control 52 (2007), 916-922. MR2324255DOI10.1109/TAC.2007.895897
  6. Ding, S., Li, S., Zheng, W., 10.1016/j.automatica.2012.06.060, Automatica 48 (2012), 2597-2606. MR2961159DOI10.1016/j.automatica.2012.06.060
  7. Dong, W., Farrell, A., 10.1109/TAC.2008.925852, IEEE Trans. Automat. Control 53 (2008), 1434-1448. MR2451233DOI10.1109/TAC.2008.925852
  8. Duan, G., Wang, H., Parameter design of smooth switching controller and application for bank-to-turn missiles. (In Chinese.), Aerospace Control 23 (2005), 41-46. 
  9. Fax, A., Murray, R., Information flow and cooperative control of vehicle formations., IEEE Trans. Automat. Control 49 (2004), 1453-1464. MR2086912
  10. Gao, L., Tang, Y., Chen, W., Zhang, H., Consensus seeking in multi-agent systems with an active leader and communication delays., Kybernetika 47 (2011), 773-789. Zbl1236.93006MR2850463
  11. Hardy, G., Littlewood, J., Polya, G., Inequalities., Cambridge University Press, Cambridge 1952. Zbl0634.26008MR0046395
  12. Hong, Y., Gao, L., Cheng, D., Hu, J., 10.1109/TAC.2007.895860, IEEE Trans. Automat. Control 52 (2007), 943-948. MR2324260DOI10.1109/TAC.2007.895860
  13. Hong, Y., Hu, J., Gao, L., 10.1016/j.automatica.2006.02.013, Automatica 42 (2006), 1177-1182. Zbl1117.93300MR2230987DOI10.1016/j.automatica.2006.02.013
  14. Hong, Y., Chen, G., Bushnell, L., 10.1016/j.automatica.2007.07.004, Automatica 44 (2008), 846-850. MR2527101DOI10.1016/j.automatica.2007.07.004
  15. Hui, Q., Haddad, W. M., Bhat, S. P., 10.1109/TAC.2008.929392, IEEE Trans. Automat. Control 53 (2008), 1887-1990. MR2454755DOI10.1109/TAC.2008.929392
  16. Jeon, I., Lee, J., 10.2514/1.40136, J. Guid., Control Dynam. 33 (2010), 275-280. DOI10.2514/1.40136
  17. Khoo, S., Xie, L., Man, Z., 10.1109/TMECH.2009.2014057, IEEE/ASME Trans. Mechatronics 14 (2009), 219-228. DOI10.1109/TMECH.2009.2014057
  18. Li, S., Du, H., Lin, X., 10.1016/j.automatica.2011.02.045, Automatica 47 (2011), 1706-1712. Zbl1226.93014MR2886774DOI10.1016/j.automatica.2011.02.045
  19. Li, S., Liu, H., Ding, S., 10.1177/0142331209339860, Trans. Inst. Measurement and Control 32 (2010), 170-187. DOI10.1177/0142331209339860
  20. Li, S., Ding, S., Li, Q., 10.1080/00207170802342818, Internat. J. Control 5 (2009), 822-836. Zbl1165.93328MR2523551DOI10.1080/00207170802342818
  21. Li, S., Tian, Y., 10.1080/00207170601148291, Internat. J. Control 80 (2007), 646-657. Zbl1117.93004MR2304124DOI10.1080/00207170601148291
  22. Olfati-Saber, R., Murray, R., 10.1109/TAC.2004.834113, IEEE Trans. Automat. Control 49 (2004), 1520-1533. MR2086916DOI10.1109/TAC.2004.834113
  23. Olfati-Saber, R., 10.1109/TAC.2005.864190, IEEE Trans. Automat. Control 51 (2006), 410-420. MR2205679DOI10.1109/TAC.2005.864190
  24. Qian, C., Li, J., 10.1109/TAC.2005.849253, IEEE Trans. Automat. Control 50 (2005), 885-890. MR2142009DOI10.1109/TAC.2005.849253
  25. Qian, C., Lin, W., A continuous feedback approach to global strong stabilization of nonlinear systems., IEEE Trans. Automat. Control 46 (2001), 1061-1079. Zbl1012.93053MR1842139
  26. Ren, W., Atkins, E., Distributed multi-vehicle coordinated control via local information exchange., Internat. J. Robust Nonlinear Control 17 (2007), 1002-1033. Zbl1266.93010MR2333296
  27. Ren, W., Distributed attitude alignment in spacecraft formation flying., Internat. J. Adapt. Control 21 (2007), 95-113. Zbl1115.93338MR2298143
  28. Ren, W., Multi-vehicle consensus with a time-varying reference state., Syst. Control Lett. 56 (2007), 474-483. Zbl1157.90459MR2331998
  29. Ren, W., On consensus algorithms for double-integrator dynamics., IEEE Trans. Automat. Control 53 (2008), 1503-1509. MR2451239
  30. Shi, G., Hong, Y., Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies., Automatica 45 (2009), 1165-1175. Zbl1162.93308MR2531590
  31. Scutari, G., Barbarossa, S., Pescosolido, L., 10.1109/TSP.2007.909377, IEEE Trans. Signal Process. 56 (2008), 1667-1684. MR2516579DOI10.1109/TSP.2007.909377
  32. Tan, F., Duan, G., 10.1016/S1004-4132(08)60216-9, J. Systems Engrg. Electronics 19 (2008), 1178-1184. Zbl1232.93079DOI10.1016/S1004-4132(08)60216-9
  33. Xiao, F., Wang, L., Chen, J., Gao, Y., 10.1016/j.automatica.2009.07.012, Automatica 45 (2009), 2605-2611. Zbl1180.93006MR2889319DOI10.1016/j.automatica.2009.07.012
  34. Wang, L., Xiao, F., 10.1109/TAC.2010.2041610, IEEE Trans. Automat. Control 55 (2010), 950-955. MR2654435DOI10.1109/TAC.2010.2041610
  35. Wang, X., Sun, X., Li, S., Ye, H., Finite-time position tracking control of rigid hydraulic manipulators based on high-order sliding mode., In: Proc. Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 226 (2012), pp. 394-415. 
  36. Wang, X., Hong, Y., Finite-time consensus for multi-agent networks with second-order agent dynamics., In: Proc. 17th IFAC World Congress, Korea 2008, pp. 15185-15190. 
  37. Zhang, C., Li, S., Ding, S., Finite-time output feedback stabilization and control for a quadrotor mini-aircraft., Kybernetika 48 (2012), 206-222. Zbl1246.93119MR2954321

Citations in EuDML Documents

top
  1. Qixun Lan, Huawei Niu, Yamei Liu, Huafeng Xu, Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems
  2. Meiying Ou, Shengwei Gu, Xianbing Wang, Kexiu Dong, Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances
  3. Lei Yu, Shumin Fei, Jun Huang, Yongmin Li, Gang Yang, Lining Sun, Robust neural network control of robotic manipulators via switching strategy
  4. Ou Meiying, Sun Haibin, Zhang Zhenxing, Li Lingchun, Wang Xiang-ao, Fixed-time tracking control for nonholonomic mobile robot

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.