Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems

Qixun Lan; Huawei Niu; Yamei Liu; Huafeng Xu

Kybernetika (2017)

  • Volume: 53, Issue: 5, page 780-802
  • ISSN: 0023-5954

Abstract

top
In this paper, the problem of global finite-time stabilization via output-feedback is investigated for a class of stochastic nonlinear cascaded systems (SNCSs). First, based on the adding a power integrator technique and the homogeneous domination approach, a global output-feedback finite-time control law is constructed for the driving subsystem. Then, based on homogeneous systems theory, it is shown that under some mild conditions the global finite- time stability in probability of the driving subsystem implies the global finite-time stability in probability of the whole SNCS. Finally, a simulation example is given to illustrate the effectiveness of the proposed control design approach.

How to cite

top

Lan, Qixun, et al. "Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems." Kybernetika 53.5 (2017): 780-802. <http://eudml.org/doc/294651>.

@article{Lan2017,
abstract = {In this paper, the problem of global finite-time stabilization via output-feedback is investigated for a class of stochastic nonlinear cascaded systems (SNCSs). First, based on the adding a power integrator technique and the homogeneous domination approach, a global output-feedback finite-time control law is constructed for the driving subsystem. Then, based on homogeneous systems theory, it is shown that under some mild conditions the global finite- time stability in probability of the driving subsystem implies the global finite-time stability in probability of the whole SNCS. Finally, a simulation example is given to illustrate the effectiveness of the proposed control design approach.},
author = {Lan, Qixun, Niu, Huawei, Liu, Yamei, Xu, Huafeng},
journal = {Kybernetika},
keywords = {stochastic nonlinear systems; cascaded systems; output-feedback stabilization; finite-time control},
language = {eng},
number = {5},
pages = {780-802},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems},
url = {http://eudml.org/doc/294651},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Lan, Qixun
AU - Niu, Huawei
AU - Liu, Yamei
AU - Xu, Huafeng
TI - Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 780
EP - 802
AB - In this paper, the problem of global finite-time stabilization via output-feedback is investigated for a class of stochastic nonlinear cascaded systems (SNCSs). First, based on the adding a power integrator technique and the homogeneous domination approach, a global output-feedback finite-time control law is constructed for the driving subsystem. Then, based on homogeneous systems theory, it is shown that under some mild conditions the global finite- time stability in probability of the driving subsystem implies the global finite-time stability in probability of the whole SNCS. Finally, a simulation example is given to illustrate the effectiveness of the proposed control design approach.
LA - eng
KW - stochastic nonlinear systems; cascaded systems; output-feedback stabilization; finite-time control
UR - http://eudml.org/doc/294651
ER -

References

top
  1. Chen, Z., Huang, J., 10.1016/j.automatica.2007.06.027, Automatica 44 (2008), 745-752. MR2527071DOI10.1016/j.automatica.2007.06.027
  2. Deng, H., Kristic, M., 10.1109/9.746260, IEEE Trans. Automat. Control 44 (1999), 328-333. MR1670006DOI10.1109/9.746260
  3. Ding, S., Levant, A., Li, S., 10.1016/j.automatica.2016.01.017, Automatica 67 (2016), 22-32. MR3471745DOI10.1016/j.automatica.2016.01.017
  4. Ding, S., Li, S., Zheng, W., 10.1016/j.automatica.2012.06.060, Automatica 48 (2012), 2597-2606. MR2961159DOI10.1016/j.automatica.2012.06.060
  5. Ding, S., Wang, J., Zheng, W., 10.1109/tie.2015.2448064, IEEE Trans. Industrial Electronics 62 (2015), 5899-5909. DOI10.1109/tie.2015.2448064
  6. Du, H., He, Y., Cheng, Y., Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems., Kybernetika 49 (2013), 507-523. Zbl1274.93008MR3117911
  7. Du, H., He, Y., Cheng, Y., 10.1109/tcsi.2013.2295012, IEEE Trans. Circ. Syst. 61 (2014), 1778-1788. DOI10.1109/tcsi.2013.2295012
  8. Du, H., Wen, G., Cheng, Y., He, Y., Jia, Ruting, 10.1109/tnnls.2016.2610140, IEEE Trans. Neu. Net. Lear. Sys. PP (2016), 99, 1-9. MR3730916DOI10.1109/tnnls.2016.2610140
  9. Du, H., Wen, G., Yu, X., Li, S., Chen, M., 10.1016/j.automatica.2015.09.026, Automatica 62 (2015), 236-242. MR3423994DOI10.1016/j.automatica.2015.09.026
  10. Duan, N., Xie, X., 10.1109/tac.2011.2107112, IEEE Trans. Automat. Control 56 (2011), 1208-1213. MR2815932DOI10.1109/tac.2011.2107112
  11. Hong, Y., Huang, J., Xu, Y., 10.1109/9.905699, IEEE Trans. Automat. Control 46 (2001), 305-309. MR1814578DOI10.1109/9.905699
  12. Hong, Y., Jiang, Z., Feng, G., 10.1137/070712043, SIAM J. Control Optim. 48 (2010), 4395-4418. Zbl1210.93066MR2665472DOI10.1137/070712043
  13. Jiang, Z., Mareels, I., 10.1109/9.557574, IEEE Trans. Autom. Control 42 (1997), 292-308. Zbl0869.93004MR1435820DOI10.1109/9.557574
  14. Khoo, S., Yin, J., Man, Z., Yu, X., 10.1016/j.automatica.2013.01.054, Automatica 49 (2013), 1403-1410. MR3044021DOI10.1016/j.automatica.2013.01.054
  15. Lan, Q., Li, S., 10.1002/rnc.3758, Int. J. Robust Nonlinear Control 27, 17, (2017), 3643-3658. MR3733629DOI10.1002/rnc.3758
  16. Lan, Q., Li, S., Khoo, S., Shi, P., 10.1080/00207179.2014.962766, Int. J. Control 83 (2015), 494-506. MR3303717DOI10.1080/00207179.2014.962766
  17. Lendek, Z., Babuska, R., Schutter, B., 10.1109/tfuzz.2008.924353, IEEE Trans. Fuzzy Syst. 17 (2009), 641-653. DOI10.1109/tfuzz.2008.924353
  18. Li, J., Qian, C., Ding, S., 10.1080/00207179.2010.511658, Int. J. Control 83 (2010), 2241-2252. MR2747289DOI10.1080/00207179.2010.511658
  19. Li, S., Tian, Y., 10.1080/00207170601148291, Int. J. Control 80 (2007), 646-657. Zbl1117.93004MR2304124DOI10.1080/00207170601148291
  20. Li, W., Xie, X., Zhang, S., 10.1137/100798259, SIAM J. Control Optim. 49 (2011), 1262-1282. MR2818881DOI10.1137/100798259
  21. Liu, S., Zhang, J., 10.1002/rnc.1255, Int. J. Robust Nonlinear Control 18 (2008), 665-687. MR2403891DOI10.1002/rnc.1255
  22. Mao, X., Stochastic Differential Equations and Their Applications. Second edition., Horwood Publishing 1997. MR1475218
  23. Mazenc, F., Praly, L., Dayawansa, W., 10.1016/0167-6911(94)90041-8, Syst. Control Lett. 23 (1994), 119-125. MR1287604DOI10.1016/0167-6911(94)90041-8
  24. Ou, M., Gu, S., Wang, X., Dong, K., 10.14736/kyb-2015-6-1049, Kybernetika 49 (2013), 1049-1067. MR3453685DOI10.14736/kyb-2015-6-1049
  25. Rosier, L., 10.1016/0167-6911(92)90078-7, Syst. Control Lett. 19 (1992), 467-473. Zbl0762.34032MR1195304DOI10.1016/0167-6911(92)90078-7
  26. Sun, H., Hou, L., Zong, G., 10.1007/s11071-016-2821-2, Nonlinear Dynamics 85 (2016), 2159-2169. DOI10.1007/s11071-016-2821-2
  27. Sun, Z., Xue, L., Zhang, K., 10.1016/j.automatica.2015.05.005, Automatica 58 (2015), 60-66. MR3355628DOI10.1016/j.automatica.2015.05.005
  28. Sun, Z., Yun, M., Li, T., 10.1016/j.automatica.2017.04.024, Automatica 81 (2017), 455-463. MR3654631DOI10.1016/j.automatica.2017.04.024
  29. Qian, C., Lin, W., 10.1109/9.935058, IEEE Trans. Automat. Control 46 (2001), 1061-1079. Zbl1012.93053MR1842139DOI10.1109/9.935058
  30. Qian, C., Lin, W., 10.1109/9.935058, IEEE Trans. Automat. Control 47 (2002), 1710-1715. MR1929946DOI10.1109/9.935058
  31. Wu, Y., Gao, F., Liu, Z., 10.1049/iet-cta.2014.1001, IET Control Theory Appl. 9 (2015), 1553-1560. MR3381713DOI10.1049/iet-cta.2014.1001
  32. Wei, Y., Zheng, W., 10.1049/iet-cta.2013.0570, IET Control Theory Appl. 8 (2014), 311-318. MR3204891DOI10.1049/iet-cta.2013.0570
  33. Wu, Z., Xie, X., Shi, P., Xia, Y., 10.1016/j.automatica.2008.12.002, Automatica 45 (2009), 997-1004. MR2535360DOI10.1016/j.automatica.2008.12.002
  34. Wu, Y., Yu, J., Zhao, Y., 10.1016/j.nonrwa.2011.10.005, Nonlinear Anal.: Real World Appl. 13 (2012), 1278-1291. MR2863956DOI10.1016/j.nonrwa.2011.10.005
  35. Yin, J., Khoo, S., 10.1002/rnc.3161, Int. J. Robust Nonlinear Control 25 (2015), 1581-1600. MR3361629DOI10.1002/rnc.3161
  36. Yin, J., Khoo, S., Man, Z., Yu, X., 10.1016/j.automatica.2011.08.050, Automatica 47 (2011), 2671-2677. Zbl1235.93254MR2886936DOI10.1016/j.automatica.2011.08.050
  37. Zha, W., Zhai, J., Fei, S., Wang, Y., 10.1016/j.isatra.2014.01.005, ISA Trans. 53 (2014), 709-716. MR2391591DOI10.1016/j.isatra.2014.01.005
  38. Zhou, J., Wen, C., Li, T., 10.1109/tac.2012.2190208, IEEE Trans. Automat. Control 57 (2012), 2627-2633. MR2991665DOI10.1109/tac.2012.2190208

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.