Verification of functional a posteriori error estimates for obstacle problem in 1D
Kybernetika (2013)
- Volume: 49, Issue: 5, page 738-754
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHarasim, Petr, and Valdman, Jan. "Verification of functional a posteriori error estimates for obstacle problem in 1D." Kybernetika 49.5 (2013): 738-754. <http://eudml.org/doc/260686>.
@article{Harasim2013,
abstract = {We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed.},
author = {Harasim, Petr, Valdman, Jan},
journal = {Kybernetika},
keywords = {obstacle problem; a posteriori error estimate; functional majorant; finite element method; variational inequalities; Uzawa algorithm; obstacle problem; a-posteriori error estimate; functional majorant; finite element method; variational inequalities; Uzawa algorithm},
language = {eng},
number = {5},
pages = {738-754},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Verification of functional a posteriori error estimates for obstacle problem in 1D},
url = {http://eudml.org/doc/260686},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Harasim, Petr
AU - Valdman, Jan
TI - Verification of functional a posteriori error estimates for obstacle problem in 1D
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 5
SP - 738
EP - 754
AB - We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed.
LA - eng
KW - obstacle problem; a posteriori error estimate; functional majorant; finite element method; variational inequalities; Uzawa algorithm; obstacle problem; a-posteriori error estimate; functional majorant; finite element method; variational inequalities; Uzawa algorithm
UR - http://eudml.org/doc/260686
ER -
References
top- Ainsworth, M., Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis., Wiley and Sons, New York 2000. Zbl1008.65076MR1885308
- Babuška, I., Strouboulis, T., The Finite Element Method and its Reliability., Oxford University Press, New York 2001. MR1857191
- Bangerth, W., Rannacher, R., Adaptive Finite Element Methods for Differential Equations., Birkhäuser, Berlin 2003. Zbl1020.65058MR1960405
- Braess, D., Hoppe, R. H. W., Schöberl, J., 10.1007/s00791-008-0104-2, Comp. Visual. Sci. 11 (2008), 351-362. MR2425501DOI10.1007/s00791-008-0104-2
- Brezi, F., Hager, W. W., Raviart, P. A., 10.1007/BF01404345, Numer. Math. 28 (1977), 431-443. MR0448949DOI10.1007/BF01404345
- Buss, H., Repin, S., A posteriori error estimates for boundary value problems with obstacles., In: Proc. 3rd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170. Zbl0968.65041MR1936177
- Carstensen, C., Merdon, C., 10.1002/num.21728, Numer. Methods Partial Differential Equations 29 (2013), 667-�692. MR3022903DOI10.1002/num.21728
- Dostál, Z., Optimal Quadratic Programming Algorithms., Springer 2009. MR2492434
- Falk, R. S., 10.1090/S0025-5718-1974-0391502-8, Math. Comput. 28 (1974), 963-971. Zbl0297.65061MR0391502DOI10.1090/S0025-5718-1974-0391502-8
- Fuchs, M., Repin, S., 10.1080/01630563.2011.571802, Numer. Funct. Anal. Optim. 32 (2011), 610-640. MR2795532DOI10.1080/01630563.2011.571802
- Glowinski, R., Lions, J. L., Trémolieres, R., Numerical Analysis of Variational Inequalities., North-Holland 1981. Zbl0463.65046MR0635927
- Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J., Solution of Variational Inequalities in Mechanics., Applied Mathematical Sciences 66, Springer-Verlag, New York 1988. Zbl0654.73019MR0952855
- Kikuchi, N., Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods., SIAM 1995. Zbl0685.73002MR0961258
- Kraus, J., Tomar, S., 10.1002/nme.3103, Internat. J. Numer. Meth. Engrg. 86 (2011), 1175-1196. Zbl1235.65130MR2817075DOI10.1002/nme.3103
- Lions, J. L., Stampacchia, G., 10.1002/cpa.3160200302, Comm. Pure Appl. Math. XX(3) (1967), 493-519. Zbl0152.34601MR0216344DOI10.1002/cpa.3160200302
- Neittaanmäki, P., Repin, S., Reliable Methods for Computer Simulation (Error Control and a Posteriori Estimates)., Elsevier 2004. Zbl1076.65093MR2095603
- Repin, S., 10.1090/S0025-5718-99-01190-4, Math. Comput. 69(230) (2000), 481-500. Zbl0949.65070MR1681096DOI10.1090/S0025-5718-99-01190-4
- Repin, S., A posteriori error estimation for nonlinear variational problems by duality theory., Zapiski Nauchn. Semin. POMI 243 (1997), 201-214. Zbl0904.65064MR1629741
- Repin, S., Estimates of deviations from exact solutions of elliptic variational inequalities., Zapiski Nauchn. Semin. POMI 271 (2000), 188-203. Zbl1118.35320MR1810617
- Repin, S., A Posteriori Estimates for Partial Differential Equations., Walter de Gruyter, Berlin 2008. Zbl1162.65001MR2458008
- Repin, S., Valdman, J., 10.1515/JNUM.2008.003, J. Numer. Math. 16 (2008), 1, 51-81. Zbl1146.65054MR2396672DOI10.1515/JNUM.2008.003
- Repin, S., Valdman, J., 10.2478/s11533-009-0035-2, Cent. Eur. J. Math. 7 (2009), 3, 506-519. Zbl1269.74202MR2534470DOI10.2478/s11533-009-0035-2
- Ulbrich, M., Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces., SIAM 2011. Zbl1235.49001MR2839219
- Valdman, J., Minimization of functional majorant in a posteriori error analysis based on multigrid-preconditioned CG method., Advances in Numerical Analysis (2009). Zbl1200.65095MR2739760
- Zou, Q., Veeser, A., Kornhuber, R., Gräser, C., 10.1007/s00211-011-0364-5, Numer. Math. 117 (2012), 4, 653-677. Zbl1218.65067MR2776914DOI10.1007/s00211-011-0364-5
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.