Functional a posteriori error estimates for incremental models in elasto-plasticity
Open Mathematics (2009)
- Volume: 7, Issue: 3, page 506-519
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topSergey Repin, and Jan Valdman. "Functional a posteriori error estimates for incremental models in elasto-plasticity." Open Mathematics 7.3 (2009): 506-519. <http://eudml.org/doc/269042>.
@article{SergeyRepin2009,
abstract = {We consider incremental problem arising in elasto-plastic models with isotropic hardening. Our goal is to derive computable and guaranteed bounds of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. Such estimates are obtained by an advanced version of the variational approach earlier used for linear boundary-value problems and nonlinear variational problems with convex functionals [24, 30]. They do no contain mesh-dependent constants and are valid for any conforming approximations regardless of the method used for their derivation. It is shown that the structure of error majorant reflects properties of the exact solution so that the majorant vanishes only if an approximate solution coincides with the exact one. Moreover, it possesses necessary continuity properties, so that any sequence of approximations converging to the exact solution in the energy space generates a sequence of positive numbers (explicitly computable by the majorant functional) that tends to zero.},
author = {Sergey Repin, Jan Valdman},
journal = {Open Mathematics},
keywords = {A posteriori error estimates; Elasto-plastic problem with isotropic hardening; Variational inequalities; a posteriori error estimates; elasto-plastic problem with isotropic hardening; variational inequalities},
language = {eng},
number = {3},
pages = {506-519},
title = {Functional a posteriori error estimates for incremental models in elasto-plasticity},
url = {http://eudml.org/doc/269042},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Sergey Repin
AU - Jan Valdman
TI - Functional a posteriori error estimates for incremental models in elasto-plasticity
JO - Open Mathematics
PY - 2009
VL - 7
IS - 3
SP - 506
EP - 519
AB - We consider incremental problem arising in elasto-plastic models with isotropic hardening. Our goal is to derive computable and guaranteed bounds of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. Such estimates are obtained by an advanced version of the variational approach earlier used for linear boundary-value problems and nonlinear variational problems with convex functionals [24, 30]. They do no contain mesh-dependent constants and are valid for any conforming approximations regardless of the method used for their derivation. It is shown that the structure of error majorant reflects properties of the exact solution so that the majorant vanishes only if an approximate solution coincides with the exact one. Moreover, it possesses necessary continuity properties, so that any sequence of approximations converging to the exact solution in the energy space generates a sequence of positive numbers (explicitly computable by the majorant functional) that tends to zero.
LA - eng
KW - A posteriori error estimates; Elasto-plastic problem with isotropic hardening; Variational inequalities; a posteriori error estimates; elasto-plastic problem with isotropic hardening; variational inequalities
UR - http://eudml.org/doc/269042
ER -
References
top- [1] Ainsworth M., Oden J.T., A posteriori error estimation in finite element analysis, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, Wiley and Sons, New York, 2000 Zbl1008.65076
- [2] Alberty J., Carstensen C., Numerical analysis of time-depending primal elastoplasticity with hardening, SIAM J. Numer. Anal., 2000, 37, 1271–1294 http://dx.doi.org/10.1137/S0036142998341301 Zbl1049.74010
- [3] Alberty J., Carstensen C., Zarrabi D., Adaptive numerical analysis in primal elastoplasticity with hardening, Comput. Methods Appl. Mech. Engrg., 1999, 171, 175–204 http://dx.doi.org/10.1016/S0045-7825(98)00210-2 Zbl0956.74049
- [4] Babuška I., Strouboulis T., The finite element method and its reliability, Oxford University Press, New York, 2001 Zbl0995.65501
- [5] Bangerth W., Rannacher R., Adaptive finite element methods for differential equations, Birkhäuser, Berlin, 2003 Zbl1020.65058
- [6] Bensoussan A., Frehse J., Asymptotic behaviour of Norton-Hoff’s law in plasticity theory and H1 regularity, In: Lions J.L. (Ed.) et al., Boundary value problems for partial differential equations and applications, Dedicated to Enrico Magenes on the occasion of his 70th birthday, Paris: Masson. Res. Notes Appl. Math., 1993, 29, 3–25 Zbl0831.35047
- [7] Bildhauer M., Fuchs M., Repin S., A posteriori error estimates for stationary slow flows of power-law fluids, Journal of Non-Newtonian Fluid Mechanics, 2007, 142, 112–122 http://dx.doi.org/10.1016/j.jnnfm.2006.06.001 Zbl1109.76007
- [8] Bildhauer M., Fuchs M., Repin S., A functional type a posteriori error analysis for Ramberg-Osgood Model, ZAMM Z. Angew. Math. Mech., 2007, 87(11–12), 860–876 http://dx.doi.org/10.1002/zamm.200710350 Zbl1128.74006
- [9] Blaheta R., Numerical methods in elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 1997, 147, 167–185 http://dx.doi.org/10.1016/S0045-7825(97)00012-1 Zbl0887.73017
- [10] Brokate M., Carstensen C., Valdman J., A quasi-static boundary value problem in multi-surface elastoplasticity, I, Analysis, Math. Methods Appl. Sci., 2004, 27, 1697–1710 http://dx.doi.org/10.1002/mma.524 Zbl1074.74013
- [11] Brokate M., Carstensen C., Valdman J., A quasi-static boundary value problem in multi-surface elastoplasticity, II, Numerical solution, Math. Methods Appl. Sci., 2005, 28, 881–901 http://dx.doi.org/10.1002/mma.593 Zbl1112.74007
- [12] Brokate M., Sprekels J., Hysteresis and phase transitions, Springer, New York, 1996 Zbl0951.74002
- [13] Carstensen C., Numerical analysis of the primal problem of elastoplasticity with hardening, Numer. Math., 1999, 82(4), 577–597 http://dx.doi.org/10.1007/s002110050431 Zbl0947.74061
- [14] Carstensen C., Orlando A., Valdman J., A convergent adaptive finite element method for the primal problem of elastoplasticity, Internat. J. Numer. Methods Engrg., 2006, 67(13), 1851–1887 http://dx.doi.org/10.1002/nme.1686 Zbl1127.74040
- [15] Ekeland I., Teman R., Convex analysis and variational problems, North-Holland, Oxford, 1976
- [16] Fuchs M., Repin S., Estimates for the deviation from the exact solutions of variational problems modeling certain classes of generalized Newtonian fluids, Math. Methods Appl. Sci., 2006, 29, 2225–2244 http://dx.doi.org/10.1002/mma.773 Zbl1105.76049
- [17] Glowinski R., Lions J.L., Tremolieres R., Analyse numerique des inequations variationnelles, Dunod, Paris, 1976 (in French) Zbl0358.65091
- [18] Gruber P., Valdman J., Implementation of an elastoplastic solver based on the Moreau, Yosida theorem, Math. Comput. Simulation, 2007, 76(1–3), 73–81 http://dx.doi.org/10.1016/j.matcom.2007.01.036 Zbl1132.74045
- [19] Gruber P., Valdman J., Solution of one-time-step problems in elastoplasticity by a slant Newton method, SIAM J. Sci. Comput., 2009, 31(2), 1558–1580 http://dx.doi.org/10.1137/070690079 Zbl1186.74025
- [20] Han W., Reddy B.D., Computational plasticity: the variational basis and numerical analysis, Comput. Methods Appl. Mech. Engrg., 1995, 283–400 Zbl0847.73078
- [21] Hofinger A., Valdman J., Numerical solution of the two-yield elastoplastic minimization problem, Computing, 2007, 81, 35–52 http://dx.doi.org/10.1007/s00607-007-0242-2 Zbl1177.74167
- [22] Krejčí P., Hysteresis, convexity and dissipation in hyperbolic equations, GAKUTO Internat. Ser. Math. Sci. Appl., Vol. 8, Gakkotosho, Tokyo, 1996 Zbl1187.35003
- [23] Lions J.L., Stampacchia G., Variational inequalities, Comm. Pure Appl. Math., 1967, XX(3), 493–519 http://dx.doi.org/10.1002/cpa.3160200302 Zbl0152.34601
- [24] Neittaanmäki P., Repin S., Reliable methods for computer simulation, Error control and a posteriori estimates, Elsevier, New York, 2004 Zbl1076.65093
- [25] Rannacher R., Suttmeier F.T., A posteriori error estimation and mesh adaptation for finite element models in elastoplasticity, Comput. Methods Appl. Mech. Engrg., 1999, 176, 333–361 http://dx.doi.org/10.1016/S0045-7825(98)00344-2 Zbl0954.74070
- [26] Repin S., A priori error estimates of variational-difference methods for Hencky plasticity problems, Zap. Nauchn. Semin. POMI, 1995, 221, 226–234 (in Russian), English translation: J. Math. Sci., New York, 1997, 87(2), 3421-3427 Zbl0927.74080
- [27] Repin S.I., Errors of finite element methods for perfectly elasto-plastic problems, Math. Models Meth. Appl. Sci., 1996, 6(5), 587–604 http://dx.doi.org/10.1142/S0218202596000237 Zbl0856.73071
- [28] Repin S., A posteriori estimates for approximate solutions of variational problems with strongly convex functionals, Problems of Mathematical Analysis, 1997, 17, 199–226 (in Russian), English translation: J. Math. Sci., 1999, 97(4), 4311–4328 Zbl0941.65059
- [29] Repin S., A posteriori error estimation for variational problems with uniformly convex functionals, Math. Comp., 2000, 69(230), 481–500 http://dx.doi.org/10.1090/S0025-5718-99-01190-4 Zbl0949.65070
- [30] Repin S., A posteriori estimates for partial differential equations, Walter de Gruyter Verlag, Berlin, 2008 http://dx.doi.org/10.1515/9783110203042 Zbl1162.65001
- [31] Repin S.I., Seregin G.A., Error estimates for stresses in the finite element analysis of the two-dimensional elastoplastic problems, Internat. J. Engrg. Sci., 1995, 33(2), 255–268 http://dx.doi.org/10.1016/0020-7225(94)00057-Q
- [32] Repin S., Valdman J., Functional a posteriori error estimates for problems with nonlinear boundary conditions, J. Numer. Math., 2008, 16(1), 51–81 http://dx.doi.org/10.1515/JNUM.2008.003 Zbl1146.65054
- [33] Repin S.I., Xanthis L.S., A posteriori error estimation for elasto-plastic problems based on duality theory, Comput. Methods Appl. Mech. Engrg., 1996, 138, 317–339 http://dx.doi.org/10.1016/S0045-7825(96)01136-X Zbl0886.73082
- [34] Seregin G., On the regularity of weak solutions of variational problems of plasticity theory, Algebra i Analiz, 1990, 2(2), 121–140 (in Russian), English translation: Leningrad Mathematical Journal, 1991, 2(2), 321-338 Zbl0704.73104
- [35] Simo J.C., Hughes T.J.R., Computational inelasticity, Springer-Verlag New York, 1998
- [36] Valdman J., Minimization of functional majorant in a posteriori error analysis based on H(div) multigrid-preconditioned CG method, Advances in Numerical Analysis, to appear Zbl1200.65095
- [37] Wieners Ch., Nonlinear solution methods for infinitesimal perfect plasticity, ZAMM Z. Angew. Math. Mech., 2007, 87(8–9), 643–660 http://dx.doi.org/10.1002/zamm.200610339
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.