Application of the random field theory in PET imaging - injection dose optimization

Jiří Dvořák; Jiří Boldyš; Magdaléna Skopalová; Otakar Bělohlávek

Kybernetika (2013)

  • Volume: 49, Issue: 2, page 280-300
  • ISSN: 0023-5954

Abstract

top
This work presents new application of the random field theory in medical imaging. Results from both integral geometry and random field theory can be used to detect locations with significantly increased radiotracer uptake in images from positron emission tomography (PET). The assumptions needed to use these results are verified on a set of real and simulated phantom images. The proposed method of detecting activation (locations with increased radiotracer concentration) is used to quantify the quality of simulated PET images. Dependence of the quality on the injection dose (amount of applied radiotracer) and patient's body parameters is estimated. It is used to derive curves of constant quality determining the injection dose needed to achieve desired quality of the resulting images. The curves are compared with the formula currently used in medical practice.

How to cite

top

Dvořák, Jiří, et al. "Application of the random field theory in PET imaging - injection dose optimization." Kybernetika 49.2 (2013): 280-300. <http://eudml.org/doc/260691>.

@article{Dvořák2013,
abstract = {This work presents new application of the random field theory in medical imaging. Results from both integral geometry and random field theory can be used to detect locations with significantly increased radiotracer uptake in images from positron emission tomography (PET). The assumptions needed to use these results are verified on a set of real and simulated phantom images. The proposed method of detecting activation (locations with increased radiotracer concentration) is used to quantify the quality of simulated PET images. Dependence of the quality on the injection dose (amount of applied radiotracer) and patient's body parameters is estimated. It is used to derive curves of constant quality determining the injection dose needed to achieve desired quality of the resulting images. The curves are compared with the formula currently used in medical practice.},
author = {Dvořák, Jiří, Boldyš, Jiří, Skopalová, Magdaléna, Bělohlávek, Otakar},
journal = {Kybernetika},
keywords = {random field theory; Euler characteristic; PET imaging; PET image quality; random field theory; Euler characteristic; PET imaging; PET image quality},
language = {eng},
number = {2},
pages = {280-300},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Application of the random field theory in PET imaging - injection dose optimization},
url = {http://eudml.org/doc/260691},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Dvořák, Jiří
AU - Boldyš, Jiří
AU - Skopalová, Magdaléna
AU - Bělohlávek, Otakar
TI - Application of the random field theory in PET imaging - injection dose optimization
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 2
SP - 280
EP - 300
AB - This work presents new application of the random field theory in medical imaging. Results from both integral geometry and random field theory can be used to detect locations with significantly increased radiotracer uptake in images from positron emission tomography (PET). The assumptions needed to use these results are verified on a set of real and simulated phantom images. The proposed method of detecting activation (locations with increased radiotracer concentration) is used to quantify the quality of simulated PET images. Dependence of the quality on the injection dose (amount of applied radiotracer) and patient's body parameters is estimated. It is used to derive curves of constant quality determining the injection dose needed to achieve desired quality of the resulting images. The curves are compared with the formula currently used in medical practice.
LA - eng
KW - random field theory; Euler characteristic; PET imaging; PET image quality; random field theory; Euler characteristic; PET imaging; PET image quality
UR - http://eudml.org/doc/260691
ER -

References

top
  1. Abbey, C. K., Barrett, H. H., 10.1364/JOSAA.18.000473, J. Opt. Soc. Amer. A 18 (2001), 473-488. DOI10.1364/JOSAA.18.000473
  2. Accorsi, R., Karp, J. S., Surti, S., 10.2967/jnumed.109.066332, J. Nucl. Med. 51 (2010), 293-300. DOI10.2967/jnumed.109.066332
  3. Adler, R. J., The Geometry of Random Fields., Wiley, London 1981. Zbl1182.60017MR0611857
  4. Adler, R. J., Taylor, J. E., Random Fields and Geometry., Springer, New York 2007. Zbl1149.60003MR2319516
  5. Boellaard, R., 10.1007/s00259-009-1297-4, European J. Nucl. Med. Mol. Imaging 37 (2010), 181-200. DOI10.1007/s00259-009-1297-4
  6. Boldyš, J., Monte Carlo simulation of PET images for injection dose optimization., In: Proc. III ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing: VipIMAGE 2011. Taylor and Francis, London 2012. 
  7. Brasse, D., Correction methods for random coincidences in fully 3D whole-nody PET: Impact on data and image quality., J. Nucl. Med. 46 (2005), 859-867. 
  8. Cao, J., Worsley, K. J., 10.1007/978-1-4613-0147-9_8, In: Spatial Statistics: Methodological Aspects and Applications. Springer Lecture Notes in Statistics 169 (2001), pp. 169-182. Zbl1022.92021DOI10.1007/978-1-4613-0147-9_8
  9. Danna, M., Optimization of tracer injection for 3D 18 F-FDG whole body (WB) PET studies using an acquisition-specific NEC (AS-NEC) curve generation., IEEE Nucl. Sci. Conf. R. (2004), 2615-2619. 
  10. Everaert, H., 10.1007/s00259-003-1317-8, European J. Nucl. Med. Mol. Imaging 30 (2003), 1615-1619. DOI10.1007/s00259-003-1317-8
  11. Gifford, H. C., Channelized Hotelling and human observer correlation for lesion detection in hepatic SPECT imaging., J. Nucl. Med. 41 (2000), 514-521. 
  12. Halpern, B. S., Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study., J. Nucl. Med. 46 (2005), 603-607. 
  13. Jacobs, F., 10.1007/s00259-004-1708-5, European J. Nucl. Med. Mol. Imaging 32 (2005), 581-588. DOI10.1007/s00259-004-1708-5
  14. Jan, S., 10.1088/0031-9155/49/19/007, Phys. Med. Biol. 49 (2004), 4543-4561. DOI10.1088/0031-9155/49/19/007
  15. Mizuta, T., 10.1007/s11307-009-0214-3, Mol. Imaging Biol. 11 (2009), 480-486. DOI10.1007/s11307-009-0214-3
  16. Powsner, R. A., Powsner, E. R., Essential Nuclear Medicine Physics. Second edition., Wiley-Blackwell, 2006. 
  17. Székely, G. J., Rizzo, M. L., 10.1016/j.jmva.2003.12.002, J. Multivariate Anal. 93 (2005), 58-80. Zbl1087.62070MR2119764DOI10.1016/j.jmva.2003.12.002
  18. Strother, S. C., Casey, M. E., Hoffman, E. J., 10.1109/23.106715, IEEE Trans. Nucl. Sci. 37 (1990), 783-788. DOI10.1109/23.106715
  19. Taylor, J. E., Worsley, K. J., Gosselin, F., 10.1093/biomet/asm004, Biometrika 94 (2007), 1-18. Zbl1143.62059MR2307898DOI10.1093/biomet/asm004
  20. Thode, H. C., Testing for Normality., Marcel Dekker, New York 2002. Zbl1032.62040MR1989476
  21. Watson, C. C., 10.1109/TNS.2004.835743, IEEE Trans. Nucl. Sci. 51 (2004), 2670-2680. DOI10.1109/TNS.2004.835743
  22. al., C. C. Watson et, Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans., J. Nucl. Med. 46 (2005), 1825-1834. 
  23. Watson, C. C., Newport, D., Casey, M. E., 10.1109/23.554831, IEEE Trans. Nucl. Sci. 44 (1997), 90-97. DOI10.1109/23.554831
  24. Worsley, K. J., 10.1038/jcbfm.1992.127, J. Cereb. Blood Flow Metab. 12 (1992), 900-918. DOI10.1038/jcbfm.1992.127
  25. Worsley, K. J., 10.2307/1427930, Adv. in Appl. Probab. 27 (1995), 943-959. Zbl0836.60043MR1358902DOI10.2307/1427930
  26. Worsley, K. J., 10.1214/aos/1176324540, Ann. Statist. 23 (1995), 640-669. Zbl0898.62120MR1332586DOI10.1214/aos/1176324540
  27. Worsley, K. J., 10.1002/(SICI)1097-0193(1996)4:1<74::AID-HBM5>3.0.CO;2-M, Hum. Brain Mapp. 4 (1996), 74-90. DOI10.1002/(SICI)1097-0193(1996)4:1<74::AID-HBM5>3.0.CO;2-M
  28. Worsley, K. J., 10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F, Hum. Brain Mapp. 8 (1999), 98-101. DOI10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.