Two-level stabilized nonconforming finite element method for the Stokes equations
Haiyan Su; Pengzhan Huang; Xinlong Feng
Applications of Mathematics (2013)
- Volume: 58, Issue: 6, page 643-656
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSu, Haiyan, Huang, Pengzhan, and Feng, Xinlong. "Two-level stabilized nonconforming finite element method for the Stokes equations." Applications of Mathematics 58.6 (2013): 643-656. <http://eudml.org/doc/260725>.
@article{Su2013,
abstract = {In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the $NCP_\{1\}-P_\{1\}$ pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size $H$ and a large stabilized Stokes problem on a fine mesh size $h=H/3$. Numerical results are presented to show the convergence performance of this combined algorithm.},
author = {Su, Haiyan, Huang, Pengzhan, Feng, Xinlong},
journal = {Applications of Mathematics},
keywords = {Stokes problem; two-level method; nonconforming finite element; error estimate; numerical result; Stokes equation; two-level method; nonconforming finite element; stability; error estimate; numerical result},
language = {eng},
number = {6},
pages = {643-656},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two-level stabilized nonconforming finite element method for the Stokes equations},
url = {http://eudml.org/doc/260725},
volume = {58},
year = {2013},
}
TY - JOUR
AU - Su, Haiyan
AU - Huang, Pengzhan
AU - Feng, Xinlong
TI - Two-level stabilized nonconforming finite element method for the Stokes equations
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 6
SP - 643
EP - 656
AB - In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the $NCP_{1}-P_{1}$ pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size $H$ and a large stabilized Stokes problem on a fine mesh size $h=H/3$. Numerical results are presented to show the convergence performance of this combined algorithm.
LA - eng
KW - Stokes problem; two-level method; nonconforming finite element; error estimate; numerical result; Stokes equation; two-level method; nonconforming finite element; stability; error estimate; numerical result
UR - http://eudml.org/doc/260725
ER -
References
top- Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D., 10.1137/S0036142905444482, SIAM J. Numer. Anal 44 (2006), 82-101. (2006) Zbl1145.76015MR2217373DOI10.1137/S0036142905444482
- Ervin, V., Layton, W., Maubach, J., 10.1002/(SICI)1098-2426(199605)12:3<333::AID-NUM4>3.0.CO;2-P, Numer. Methods Partial Differ. Equations 12 (1996), 333-346. (1996) Zbl0852.76039MR1388444DOI10.1002/(SICI)1098-2426(199605)12:3<333::AID-NUM4>3.0.CO;2-P
- Feng, X., Kim, I., Nam, H., Sheen, D., 10.1016/j.cam.2011.06.009, J. Comput. Appl. Math. 236 (2011), 714-727. (2011) Zbl1233.65088MR2853496DOI10.1016/j.cam.2011.06.009
- He, Y., Li, K., 10.1007/s00607-004-0118-7, Computing 74 (2005), 337-351. (2005) Zbl1099.65111MR2149343DOI10.1007/s00607-004-0118-7
- Hecht, F., al., et, FREEFEM, version 2.3-3 [online], Available from: http://www.freefem.org (2008). (2008)
- Huang, P., He, Y., Feng, X., Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem, Math. Probl. Eng. 2011 (2011), Article ID: 745908. (2011) Zbl1235.74286MR2826898
- Layton, W., 10.1016/0898-1221(93)90318-P, Comput. Math. Appl. 26 (1993), 33-38. (1993) Zbl0773.76042MR1220955DOI10.1016/0898-1221(93)90318-P
- Layton, W., Lenferink, W., 10.1016/0096-3003(94)00134-P, Appl. Math. Comput. 69 (1995), 263-274. (1995) Zbl0828.76017MR1326676DOI10.1016/0096-3003(94)00134-P
- Layton, W., Tobiska, L., 10.1137/S003614299630230X, SIAM J. Numer. Anal. 35 (1998), 2035-2054. (1998) Zbl0913.76050MR1639994DOI10.1137/S003614299630230X
- Li, J., Chen, Z., 10.1007/s00607-008-0001-z, Computing 82 (2008), 157-170. (2008) Zbl1155.65101MR2421582DOI10.1007/s00607-008-0001-z
- Li, J., He, Y., 10.1016/j.cam.2007.02.015, J. Comput. Appl. Math. 214 (2008), 58-65. (2008) Zbl1132.35436MR2391672DOI10.1016/j.cam.2007.02.015
- Xu, J., 10.1137/0915016, SIAM J. Sci. Comput. 15 (1994), 231-237. (1994) Zbl0795.65077MR1257166DOI10.1137/0915016
- Xu, J., 10.1137/S0036142992232949, SIAM J. Numer. Anal. 33 (1996), 1759-1777. (1996) Zbl0860.65119MR1411848DOI10.1137/S0036142992232949
- Xu, J., 10.1137/S0036142992232949, SIAM J. Numer. Anal. 33 (1996), 1759-1777. (1996) Zbl0860.65119MR1411848DOI10.1137/S0036142992232949
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.