Two-level stabilized nonconforming finite element method for the Stokes equations

Haiyan Su; Pengzhan Huang; Xinlong Feng

Applications of Mathematics (2013)

  • Volume: 58, Issue: 6, page 643-656
  • ISSN: 0862-7940

Abstract

top
In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the N C P 1 - P 1 pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size H and a large stabilized Stokes problem on a fine mesh size h = H / 3 . Numerical results are presented to show the convergence performance of this combined algorithm.

How to cite

top

Su, Haiyan, Huang, Pengzhan, and Feng, Xinlong. "Two-level stabilized nonconforming finite element method for the Stokes equations." Applications of Mathematics 58.6 (2013): 643-656. <http://eudml.org/doc/260725>.

@article{Su2013,
abstract = {In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the $NCP_\{1\}-P_\{1\}$ pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size $H$ and a large stabilized Stokes problem on a fine mesh size $h=H/3$. Numerical results are presented to show the convergence performance of this combined algorithm.},
author = {Su, Haiyan, Huang, Pengzhan, Feng, Xinlong},
journal = {Applications of Mathematics},
keywords = {Stokes problem; two-level method; nonconforming finite element; error estimate; numerical result; Stokes equation; two-level method; nonconforming finite element; stability; error estimate; numerical result},
language = {eng},
number = {6},
pages = {643-656},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two-level stabilized nonconforming finite element method for the Stokes equations},
url = {http://eudml.org/doc/260725},
volume = {58},
year = {2013},
}

TY - JOUR
AU - Su, Haiyan
AU - Huang, Pengzhan
AU - Feng, Xinlong
TI - Two-level stabilized nonconforming finite element method for the Stokes equations
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 6
SP - 643
EP - 656
AB - In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the $NCP_{1}-P_{1}$ pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size $H$ and a large stabilized Stokes problem on a fine mesh size $h=H/3$. Numerical results are presented to show the convergence performance of this combined algorithm.
LA - eng
KW - Stokes problem; two-level method; nonconforming finite element; error estimate; numerical result; Stokes equation; two-level method; nonconforming finite element; stability; error estimate; numerical result
UR - http://eudml.org/doc/260725
ER -

References

top
  1. Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D., 10.1137/S0036142905444482, SIAM J. Numer. Anal 44 (2006), 82-101. (2006) Zbl1145.76015MR2217373DOI10.1137/S0036142905444482
  2. Ervin, V., Layton, W., Maubach, J., 10.1002/(SICI)1098-2426(199605)12:3<333::AID-NUM4>3.0.CO;2-P, Numer. Methods Partial Differ. Equations 12 (1996), 333-346. (1996) Zbl0852.76039MR1388444DOI10.1002/(SICI)1098-2426(199605)12:3<333::AID-NUM4>3.0.CO;2-P
  3. Feng, X., Kim, I., Nam, H., Sheen, D., 10.1016/j.cam.2011.06.009, J. Comput. Appl. Math. 236 (2011), 714-727. (2011) Zbl1233.65088MR2853496DOI10.1016/j.cam.2011.06.009
  4. He, Y., Li, K., 10.1007/s00607-004-0118-7, Computing 74 (2005), 337-351. (2005) Zbl1099.65111MR2149343DOI10.1007/s00607-004-0118-7
  5. Hecht, F., al., et, FREEFEM + + , version 2.3-3 [online], Available from: http://www.freefem.org (2008). (2008) 
  6. Huang, P., He, Y., Feng, X., Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem, Math. Probl. Eng. 2011 (2011), Article ID: 745908. (2011) Zbl1235.74286MR2826898
  7. Layton, W., 10.1016/0898-1221(93)90318-P, Comput. Math. Appl. 26 (1993), 33-38. (1993) Zbl0773.76042MR1220955DOI10.1016/0898-1221(93)90318-P
  8. Layton, W., Lenferink, W., 10.1016/0096-3003(94)00134-P, Appl. Math. Comput. 69 (1995), 263-274. (1995) Zbl0828.76017MR1326676DOI10.1016/0096-3003(94)00134-P
  9. Layton, W., Tobiska, L., 10.1137/S003614299630230X, SIAM J. Numer. Anal. 35 (1998), 2035-2054. (1998) Zbl0913.76050MR1639994DOI10.1137/S003614299630230X
  10. Li, J., Chen, Z., 10.1007/s00607-008-0001-z, Computing 82 (2008), 157-170. (2008) Zbl1155.65101MR2421582DOI10.1007/s00607-008-0001-z
  11. Li, J., He, Y., 10.1016/j.cam.2007.02.015, J. Comput. Appl. Math. 214 (2008), 58-65. (2008) Zbl1132.35436MR2391672DOI10.1016/j.cam.2007.02.015
  12. Xu, J., 10.1137/0915016, SIAM J. Sci. Comput. 15 (1994), 231-237. (1994) Zbl0795.65077MR1257166DOI10.1137/0915016
  13. Xu, J., 10.1137/S0036142992232949, SIAM J. Numer. Anal. 33 (1996), 1759-1777. (1996) Zbl0860.65119MR1411848DOI10.1137/S0036142992232949
  14. Xu, J., 10.1137/S0036142992232949, SIAM J. Numer. Anal. 33 (1996), 1759-1777. (1996) Zbl0860.65119MR1411848DOI10.1137/S0036142992232949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.