Displaying similar documents to “Two-level stabilized nonconforming finite element method for the Stokes equations”

A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions

Christine Bernardi, Frédéric Hecht, Rüdiger Verfürth (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider a variational formulation of the three-dimensional Navier–Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish and error estimates.

Superconvergence of a stabilized approximation for the Stokes eigenvalue problem by projection method

Pengzhan Huang (2014)

Applications of Mathematics

Similarity:

This paper presents a superconvergence result based on projection method for stabilized finite element approximation of the Stokes eigenvalue problem. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares method. The paper complements the work of Li et al. (2012), which establishes the superconvergence result of the Stokes equations by the stabilized finite element method. Moreover, numerical tests confirm the theoretical analysis. ...

Two-grid finite-element schemes for the transient Navier-Stokes problem

Vivette Girault, Jacques-Louis Lions (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size H . In the second step, the problem is linearized by substituting into the non-linear term, the velocity 𝐮 H computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size h . This approach is motivated by...

A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations

Vivette Girault, Béatrice Rivière, Mary F. Wheeler (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper we solve the time-dependent incompressible Navier-Stokes equations by splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the pressure. We present some numerical experiments.