Problemi ellittici non lineari con dati singolari e applicazioni alla teoria elettrodebole di Glashow-Salam-Weinberg

Daniele Bartolucci

Bollettino dell'Unione Matematica Italiana (2001)

  • Volume: 4-A, Issue: 3, page 395-398
  • ISSN: 0392-4041

How to cite

top

Bartolucci, Daniele. "Problemi ellittici non lineari con dati singolari e applicazioni alla teoria elettrodebole di Glashow-Salam-Weinberg." Bollettino dell'Unione Matematica Italiana 4-A.3 (2001): 395-398. <http://eudml.org/doc/260848>.

@article{Bartolucci2001,
abstract = {},
author = {Bartolucci, Daniele},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3},
pages = {395-398},
publisher = {Unione Matematica Italiana},
title = {Problemi ellittici non lineari con dati singolari e applicazioni alla teoria elettrodebole di Glashow-Salam-Weinberg},
url = {http://eudml.org/doc/260848},
volume = {4-A},
year = {2001},
}

TY - JOUR
AU - Bartolucci, Daniele
TI - Problemi ellittici non lineari con dati singolari e applicazioni alla teoria elettrodebole di Glashow-Salam-Weinberg
JO - Bollettino dell'Unione Matematica Italiana
DA - 2001/12//
PB - Unione Matematica Italiana
VL - 4-A
IS - 3
SP - 395
EP - 398
AB -
LA - ita
UR - http://eudml.org/doc/260848
ER -

References

top
  1. BREZIS, H., MERLE, F., Uniform estimates and blow-up behaviour for solutions of - Δ u = V x e u in two dimensions, Comm. in P. D. E., 16 (1999), 1223-1253. Zbl0746.35006MR1132783DOI10.1080/03605309108820797
  2. BREZIS, H., LI, Y. Y., SHAFRIR, I., A Sup+Inf inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Funct. Anal., 115 (1993), 344-358. Zbl0794.35048MR1234395DOI10.1006/jfan.1993.1094
  3. DING, W., JOST, J., LI, J., WANG, G., Existence results for mean field equations, Ann. Inst. H. Poincarè Anal. Non Lin., 16 (1999). Zbl0937.35055MR1712560DOI10.1016/S0294-1449(99)80031-6
  4. LI, Y. Y., Harnack Type inequality: the Method of Moving Planes, Comm. Math. Phys., 200 (1999), 421-444. Zbl0928.35057MR1673972DOI10.1007/s002200050536
  5. LI, Y. Y., SHAFRIR, I., Blow-up analysis for Solutions of - Δ u = V x e u in dimension two, Ind. Univ. Math. J., 43 (1994), 1255-1270. Zbl0842.35011MR1322618DOI10.1512/iumj.1994.43.43054
  6. SPRUCK, J., YANG, Y., On Multivortices in the Electroweak Theory I: Existence of Periodic Solutions, Comm. Math. Phys., 144 (1992), 1-16. Zbl0748.53059MR1151243
  7. STRUWE, M., TARANTELLO, G., On multivortex solutions in Chern-Simons gauge theory, Boll. U. M. I., 8 (1998), 109-121. Zbl0912.58046MR1619043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.