Lefschetz coincidence numbers of solvmanifolds with Mostow conditions
Archivum Mathematicum (2014)
- Volume: 050, Issue: 1, page 27-37
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKasuya, Hisashi. "Lefschetz coincidence numbers of solvmanifolds with Mostow conditions." Archivum Mathematicum 050.1 (2014): 27-37. <http://eudml.org/doc/261096>.
@article{Kasuya2014,
abstract = {For any two continuous maps $f$, $g$ between two solvmanifolds of the same dimension satisfying the Mostow condition, we give a technique of computation of the Lefschetz coincidence number of $f$, $g$. This result is an extension of the result of Ha, Lee and Penninckx for completely solvable case.},
author = {Kasuya, Hisashi},
journal = {Archivum Mathematicum},
keywords = {de Rham cohomology; Lefschetz coincidence number; solvmanifold; de Rham cohomology; Lefschetz coincidence number; solvmanifold},
language = {eng},
number = {1},
pages = {27-37},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lefschetz coincidence numbers of solvmanifolds with Mostow conditions},
url = {http://eudml.org/doc/261096},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Kasuya, Hisashi
TI - Lefschetz coincidence numbers of solvmanifolds with Mostow conditions
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 1
SP - 27
EP - 37
AB - For any two continuous maps $f$, $g$ between two solvmanifolds of the same dimension satisfying the Mostow condition, we give a technique of computation of the Lefschetz coincidence number of $f$, $g$. This result is an extension of the result of Ha, Lee and Penninckx for completely solvable case.
LA - eng
KW - de Rham cohomology; Lefschetz coincidence number; solvmanifold; de Rham cohomology; Lefschetz coincidence number; solvmanifold
UR - http://eudml.org/doc/261096
ER -
References
top- Auslander, L., 10.1090/S0002-9904-1973-13134-9, Bull. Amer. Math. Soc. 79 (1973), no. 2, 227–261. (1973) Zbl0265.22016MR0486307DOI10.1090/S0002-9904-1973-13134-9
- Baues, O., Klopsch, B., Deformations and rigidity of lattices in solvable Lie groups, J. Topol. (online published). MR3145141
- Console, S., Fino, A., On the de Rham cohomology of solvmanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 10 (2011), no. 4, 801–811. (2011) Zbl1242.53055MR2932894
- Ha, K.Y., Lee, J.B., Penninckx, P., Anosov theorem for coincidences on special solvmanifolds of type (R), Proc. Amer. Math. Soc. 139 (2011), no. 6, 2239–2248. (2011) MR2775401
- Hattori, A., Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 289–331. (1960) Zbl0099.18003MR0124918
- Jezierski, J., Marzantowicz, W., Homotopy methods in topological fixed and periodic points theory, Topol. Fixed Point Theory Appl., vol. 3, Springer, Dordrecht, 2006. (2006) Zbl1085.55001MR2189944
- Kasuya, H., 10.1007/s12220-013-9429-2, J. Geom. Anal. (2013), Online First. (2013) MR3299283DOI10.1007/s12220-013-9429-2
- Kasuya, H., 10.1112/blms/bds057, Bull. Lond. Math. Soc. 45 (2013), no. 1, 15–26. (2013) Zbl1262.53061MR3033950DOI10.1112/blms/bds057
- McCleary, J., A user’s guide to spectral sequences, second ed., Cambridge Studies in Advanced Mathematics, Cambridge, 2001. (2001) Zbl0959.55001MR1793722
- McCord, C. K., 10.1016/S0166-8641(96)00081-8, Topology Appl. 75 (1997), no. 1, 81–92. (1997) Zbl1001.55004MR1425386DOI10.1016/S0166-8641(96)00081-8
- McCord, C.K.,, 10.2140/pjm.1991.147.153, Pacific J. Math. 147 (1991), no. 1, 153–164. (1991) Zbl0666.55002MR1081679DOI10.2140/pjm.1991.147.153
- Mostow, G.D., Cohomology of topological groups and solvmanifolds, Ann. of Math. (2) 73 (1961), 20–48. (1961) Zbl0103.26501MR0125179
- Nomizu, K., 10.2307/1969716, Ann. of Math. (2) 59 (1954), 531–538. (1954) Zbl0058.02202MR0064057DOI10.2307/1969716
- Onishchik, A.L., Vinberg, E.B., Lie groups and Lie algebras II, Springer, 2000. (2000) Zbl0932.00011MR1756406
- Raghnathan, M.S., Discrete subgroups of Lie Groups, Springer-Verlag, New York, 1972. (1972) MR0507234
- Steenrod, N., The Topology of Fibre Bundles, Princeton University Press, 1951. (1951) Zbl0054.07103MR0039258
- Witte, D., 10.1007/BF01231442, Invent. Math. 122 (1995), no. 1, 147–193. (1995) Zbl0844.22015MR1354957DOI10.1007/BF01231442
- Wong, P., Reidemeister number, Hirsch rank, coincidences on polycyclic groups and solvmanifolds, J. Reine Angew. Math. 524 (2000), 185–204. (2000) Zbl0962.55002MR1770607
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.