Lefschetz coincidence numbers of solvmanifolds with Mostow conditions

Hisashi Kasuya

Archivum Mathematicum (2014)

  • Volume: 050, Issue: 1, page 27-37
  • ISSN: 0044-8753

Abstract

top
For any two continuous maps f , g between two solvmanifolds of the same dimension satisfying the Mostow condition, we give a technique of computation of the Lefschetz coincidence number of f , g . This result is an extension of the result of Ha, Lee and Penninckx for completely solvable case.

How to cite

top

Kasuya, Hisashi. "Lefschetz coincidence numbers of solvmanifolds with Mostow conditions." Archivum Mathematicum 050.1 (2014): 27-37. <http://eudml.org/doc/261096>.

@article{Kasuya2014,
abstract = {For any two continuous maps $f$, $g$ between two solvmanifolds of the same dimension satisfying the Mostow condition, we give a technique of computation of the Lefschetz coincidence number of $f$, $g$. This result is an extension of the result of Ha, Lee and Penninckx for completely solvable case.},
author = {Kasuya, Hisashi},
journal = {Archivum Mathematicum},
keywords = {de Rham cohomology; Lefschetz coincidence number; solvmanifold; de Rham cohomology; Lefschetz coincidence number; solvmanifold},
language = {eng},
number = {1},
pages = {27-37},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lefschetz coincidence numbers of solvmanifolds with Mostow conditions},
url = {http://eudml.org/doc/261096},
volume = {050},
year = {2014},
}

TY - JOUR
AU - Kasuya, Hisashi
TI - Lefschetz coincidence numbers of solvmanifolds with Mostow conditions
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 1
SP - 27
EP - 37
AB - For any two continuous maps $f$, $g$ between two solvmanifolds of the same dimension satisfying the Mostow condition, we give a technique of computation of the Lefschetz coincidence number of $f$, $g$. This result is an extension of the result of Ha, Lee and Penninckx for completely solvable case.
LA - eng
KW - de Rham cohomology; Lefschetz coincidence number; solvmanifold; de Rham cohomology; Lefschetz coincidence number; solvmanifold
UR - http://eudml.org/doc/261096
ER -

References

top
  1. Auslander, L., 10.1090/S0002-9904-1973-13134-9, Bull. Amer. Math. Soc. 79 (1973), no. 2, 227–261. (1973) Zbl0265.22016MR0486307DOI10.1090/S0002-9904-1973-13134-9
  2. Baues, O., Klopsch, B., Deformations and rigidity of lattices in solvable Lie groups, J. Topol. (online published). MR3145141
  3. Console, S., Fino, A., On the de Rham cohomology of solvmanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 10 (2011), no. 4, 801–811. (2011) Zbl1242.53055MR2932894
  4. Ha, K.Y., Lee, J.B., Penninckx, P., Anosov theorem for coincidences on special solvmanifolds of type (R), Proc. Amer. Math. Soc. 139 (2011), no. 6, 2239–2248. (2011) MR2775401
  5. Hattori, A., Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 289–331. (1960) Zbl0099.18003MR0124918
  6. Jezierski, J., Marzantowicz, W., Homotopy methods in topological fixed and periodic points theory, Topol. Fixed Point Theory Appl., vol. 3, Springer, Dordrecht, 2006. (2006) Zbl1085.55001MR2189944
  7. Kasuya, H., 10.1007/s12220-013-9429-2, J. Geom. Anal. (2013), Online First. (2013) MR3299283DOI10.1007/s12220-013-9429-2
  8. Kasuya, H., 10.1112/blms/bds057, Bull. Lond. Math. Soc. 45 (2013), no. 1, 15–26. (2013) Zbl1262.53061MR3033950DOI10.1112/blms/bds057
  9. McCleary, J., A user’s guide to spectral sequences, second ed., Cambridge Studies in Advanced Mathematics, Cambridge, 2001. (2001) Zbl0959.55001MR1793722
  10. McCord, C. K., 10.1016/S0166-8641(96)00081-8, Topology Appl. 75 (1997), no. 1, 81–92. (1997) Zbl1001.55004MR1425386DOI10.1016/S0166-8641(96)00081-8
  11. McCord, C.K.,, 10.2140/pjm.1991.147.153, Pacific J. Math. 147 (1991), no. 1, 153–164. (1991) Zbl0666.55002MR1081679DOI10.2140/pjm.1991.147.153
  12. Mostow, G.D., Cohomology of topological groups and solvmanifolds, Ann. of Math. (2) 73 (1961), 20–48. (1961) Zbl0103.26501MR0125179
  13. Nomizu, K., 10.2307/1969716, Ann. of Math. (2) 59 (1954), 531–538. (1954) Zbl0058.02202MR0064057DOI10.2307/1969716
  14. Onishchik, A.L., Vinberg, E.B., Lie groups and Lie algebras II, Springer, 2000. (2000) Zbl0932.00011MR1756406
  15. Raghnathan, M.S., Discrete subgroups of Lie Groups, Springer-Verlag, New York, 1972. (1972) MR0507234
  16. Steenrod, N., The Topology of Fibre Bundles, Princeton University Press, 1951. (1951) Zbl0054.07103MR0039258
  17. Witte, D., 10.1007/BF01231442, Invent. Math. 122 (1995), no. 1, 147–193. (1995) Zbl0844.22015MR1354957DOI10.1007/BF01231442
  18. Wong, P., Reidemeister number, Hirsch rank, coincidences on polycyclic groups and solvmanifolds, J. Reine Angew. Math. 524 (2000), 185–204. (2000) Zbl0962.55002MR1770607

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.